Skip to main content
Log in

Preparation and enantioseparation characteristics of three chiral stationary phases based on modified β-cyclodextrin for liquid chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In order to study the effect of the nature and the length of the spacer, three mixed 10-undecenoate/phenylcarbamate derivatives of β-cyclodextrin have been prepared and linked to allylsilica gel by means of a radical reaction. The chiral recognition ability of the resulting materials, when used as liquid chromatography chiral stationary phases (CSPs), was evaluated using heptane and either 2-propanol or chloroform as organic mobile-phase modifiers. A large variety of racemic compounds have been separated successfully on these CSPs (mainly pharmaceuticals and herbicides). Optimization of these separations was discussed in terms of mobile-phase composition and structural patterns of the injected analytes. The efficiencies of the three prepared materials were compared to those of previously described perphenylated-β-cyclodextrin column and to analogous cellulose derivative-based CSPs.

Schematic illustration of the b-cyclodextrin/mandelic acid inclusion complex

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gübitz G, Schmid MG (2004) In: Gübitz G, Schmid MG (eds) Chiral separations: methods and protocols. Humana, Totowa

    Google Scholar 

  2. Maier NM, Lindner W (2006) In: Francotte E, Lindner W (eds) Chirality in drug research. Wiley-VCH, Weinheim

    Google Scholar 

  3. Armstrong DW (2002) In: Issaq HJ (ed) A century of separation science. Marcel Dekker, New York

    Google Scholar 

  4. Zhong Q, He L, Beesley TE, Trahanovsky WS, Sun P, Wang C, Armstrong DW (2006) Optimization of the synthesis of 2, 6-dinitro-4-trifluoromethylphenyl ether substituted cyclodextrin bonded chiral stationary phases. Chromatographia 64:147–155

    Article  CAS  Google Scholar 

  5. Cheng Y, Fan L, Chen H, Chen X, Hu Z (2005) Method for on-line derivatization and separation of aspartic acid enantiomers in pharmaceuticals application by the coupling of flow injection with micellar electrokinetic chromatography. J Chromatogr A 1072:259–265

    Article  CAS  Google Scholar 

  6. Armstrong DW, DeMond W (1984) Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J Chromatogr Sci 22:411–415

    CAS  Google Scholar 

  7. Mitchell CR, Armstrong DW (2004) In: Gübitz G, Schmid MG (eds) Chiral separations: methods and protocols. Humana, Totowa

    Google Scholar 

  8. Si-Ahmed K, Tazerouti F, Badjah-Hadj-Ahmed AY, Meklati BY (2005) Synthesis and application of native and hydroxypropyl-substituted β-cyclodextrin bonded silica gel as stationary phases for high performance liquid chromatography. Chromatographia 62:571–579

    Article  Google Scholar 

  9. Si-Ahmed K, Tazerouti F, Badjah-Hadj-Ahmed AY, Meklati BY (2007) Preparation and chromatographic properties of a multimodal chiral stationary phase based on phenyl-carbamate-propyl-β-CD for HPLC. J Sep Sci 30:2025–2036

    Article  Google Scholar 

  10. Cachau C, Thienpont A, Soulard M-H, Félix G (1997) Chromatographic properties in normal-mode HPLC of chiral stationary phases based on substituted β-cyclodextrins. Chromatographia 44:411–416

    Article  CAS  Google Scholar 

  11. Nakamura K, Fujima H, Kitagawa H, Wada H, Makino K (1995) Preparation and chromatographic characteristics of a chiral-recognizing perphenylated cyclodextrin column. J Chromatogr 694:111–118

    Article  CAS  Google Scholar 

  12. Tazerouti F, Badjah-Hadj-Ahmed AY, Meklati BY, Franco P, Minguillon C (2002) Enantiomeric separation of drugs and herbicides on a β-cyclodextrin-bonded stationary phase. Chirality 14:59–66

    Article  CAS  Google Scholar 

  13. Zhou A, Lv X, Xie Y, Yan C, Gao R (2005) Chromatographic evaluation of perphenylcarbamoylated β-cyclodextrin bonded stationary phase for micro-high performance liquid chromatography and pressurized capillary electrochromatography. Anal Chim Acta 547:158–164

    Article  CAS  Google Scholar 

  14. Armstrong DW, Chang CD, Lee SH (1991) (R)- and (S)-naphthylethylcarbamate-substituted β-cyclodextrin bonded stationary phases for the reversed-phase liquid chromatographic separation of enantiomers. J Chromatogr 539:83–90

    Article  CAS  Google Scholar 

  15. Chankvetadze B, Yashima E, Okamoto Y (1996) Dichloro-, dimethyl-, and chloromethylphenylcarbamate derivatives of cyclodextrins as chiral stationary phases for high-performance liquid chromatography. Chirality 8:402–407

    Article  CAS  Google Scholar 

  16. Zhong Q, He L, Beesley TE, Trahanovsky WS, Sun P, Wang C, Armstrong DW (2006) Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. J Chromatogr A 1115:19–45

    Article  CAS  Google Scholar 

  17. Berthod A, Chang CD, Armstrong DW (1993) β-Cyclodextrin chiral stationary phases for liquid chromatography. Effect of the spacer arm on chiral recognition. Talanta 40:1367–1373

    Article  CAS  Google Scholar 

  18. Zhou ZM, Fang M, Yu CX (2005) Synthesis and chromatographic properties of α-Schiff bases (6-imino)-β-cyclodextrin bonded silica for stationary phase of liquid chromatography. Anal Chim Acta 539:23–29

    Article  CAS  Google Scholar 

  19. Liu M, Da SL, Feng YQ, Li LS (2005) Study on the preparation method and performance of a new β-cyclodextrin bonded silica stationary phase for liquid chromatography. Anal Chim Acta 533:89–95

    Article  CAS  Google Scholar 

  20. Armstrong DW (1985) Bonded phase material for chromatographic separations. U.S. patent 4539399

  21. Chang CD, Armstrong DW (1993) β-Cyclodextrin chiral stationary phases for liquid chromatography. Effect of the spacer arm on chiral recognition. Talanta 40:1367–1373

    Article  Google Scholar 

  22. Kim M, Way JD, Baldwin RM (2004) Effects of cross-linking and spacer groups on beta-cyclodextrin bonded liquid chromatographic separation. Korean J Chem Eng 21:465–468

    Article  CAS  Google Scholar 

  23. Kuravchi Y, Ono H, Wang B, Egashira N, Ohga K (1997) Preparation of a β-cyclodextrin-modified n-carboxymethylchitosan and its chromatographic behavior as a chiral HPLC stationary phase. Anal Sci 13:47–52

    Article  Google Scholar 

  24. Feng YQ, Xie MJ, Da SL (2000) Preparation and characterization of an L-tyrosine-derivatized β-cyclodextrin-bonded silica stationary phase for liquid chromatography. Anal Chim Acta 403:187–195

    Article  CAS  Google Scholar 

  25. Minguillon C, Senso A, Oliveros L (1997) Benzoates of cellulose bonded on silica gel: chiral discrimination ability as high-performance liquid chromatographic chiral stationary phases. Chirality 9:145–149

    Article  Google Scholar 

  26. Franco P, Senso A, Oliveros L, Minguillon C (2001) Covalently bonded polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J Chromatogr A 906:155–170

    Article  CAS  Google Scholar 

  27. Hargitai T, Kaida Y, Okamoto Y (1993) Preparation and chromatographic evaluation of 3, 5-dimethylphenyl carbamoylated β-cyclodextrin stationary phases for normal-phase high-performance liquid chromatographic separation of enantiomers. J Chromatogr 628:11–22

    Article  CAS  Google Scholar 

  28. Oliveros L, Senso A, Franco P, Minguillon C (1998) Carbamates of cellulose bonded on silica gel: chiral discrimination ability as HPLC chiral stationary phases. Chirality 10:283–288

    Article  CAS  Google Scholar 

  29. Poon YF, Muderawan IW, Ng SC (2006) Synthesis and application of mono-2A-azido-2A-deoxyperphenylcarbamoylated β-cyclodextrin and mono-2A-azido-2A-deoxyperacetylated β-cyclodextrin as chiral stationary phases for high-performance liquid chromatography. J Chromatogr A 1101:185–197

    Article  CAS  Google Scholar 

  30. Thunberg L, Allenmark S, Fribreg A, Ek F, Frejd T (2004) Evaluation of two pairs of chiral stationary phases: effects from the length of the achiral spacers. Chirality 16:614–624

    Article  CAS  Google Scholar 

  31. Ali I, Aboul-Enein HY (2006) Impact of immobilized polysaccharide chiral stationary phases on enantiomeric separations. J Sep Sci 29:762–769

    Article  CAS  Google Scholar 

  32. D’Acquarica I (2000) New synthetic strategies for the preparation of novel chiral stationary phases for high-performance liquid chromatography containing natural pool selectors. J Pharm Biomed Anal 23:3–13

    Article  Google Scholar 

  33. Hyun MH, Kim DH (2004) Spacer length effect of a chiral stationary phase based on (+)-(18-crown-6)-2, 3, 11, 12-tetracarboxylic acid. Chirality 16:294–301

    Article  CAS  Google Scholar 

  34. Chen Z, Fuyumuro T, Watabe K, Hobo T (2004) Influence of spacers and organic modifiers on chromatographic behaviors on chiral diamide stationary phase with N-(3, 5-dimethylbenzoyl)-D-phenylglycine. Anal Chim Acta 518:181–189

    Article  CAS  Google Scholar 

  35. Félix G, Cachau C, Thienpont A, Soulard M-H (1996) Synthesis and chromatographic properties of HPLC Chiral stationary phases based upon β-cyclodestrins. Chromatographia 42:583–590

    Article  Google Scholar 

  36. Amstrong DW, Stalcup AM, Hilton ML, Ducan JD, Faulkner JR, Chang S-C (1990) Derivatized cyclodextrins for normal-phase liquid chromatographic separation of enantiomers. Anal Chem 62:1610–1615

    Article  Google Scholar 

  37. Hilton ML, Chang S-C, Gasper MP, Pawlowska M, Armstrong DW, Stalcup AM (1993) Comparison of the enantioselectivity of phenethyl- and naphthylethyl-carbamate substituted cyclodextrin bonded phases. J Liq Chromatogr Relat Technol 16:127–147

    Article  CAS  Google Scholar 

  38. Garcés J, Franco P, Oliveros L, Minguillon C (2003) Mixed cellulose-derived benzoates bonded on allylsilica gel as HPLC chiral stationary phases: influence of the introduction of an aromatic moiety in the fixation substituent. Tetrahedron Asymmetr 14:1179–1185

    Article  Google Scholar 

  39. Ward TJ, Armstrong DW (1988) In: Zief M, Crane LJ (eds) Chromatographic chiral separations. Marcel Dekker, New York

    Google Scholar 

  40. Aboul-Enein HY (2003) Chiral separation of some non-steroidal anti-inflammatory drugs on tartardiamide DMB chiral stationary phase by HPLC. J Sep Sci 26:521–524

    Article  CAS  Google Scholar 

  41. Aboul-Enein HY, Al-Duraibi IA (1999) Enantiomeric separation of propranolol and analogs on newly developed Chirose C1 chiral stationary phase. Enantiomer 4:451–454

    CAS  Google Scholar 

  42. Péter M, Péter A, Van Der Eycken J, Cosmos P, Bernath G, Fulop F (1998) High-performance liquid chromatographic separation of enantiomers of cyclic 1, 3-amino alcohol derivatives. J Chromatogr A 816:123–129

    Article  Google Scholar 

  43. Perrin C, Vu VA, Matthijs N, Maftouh M (2002) Screening approach for chiral separation of pharmaceuticals: Part I. Normal-phase liquid chromatography. J Chromatogr A 947:69–83

    Article  CAS  Google Scholar 

  44. Patel BK, Valentova J, Hutt AJ (2002) Chromatographic separation and enantiomeric resolution of flurbiprofen and its major metabolites. Chromatographia 55:135–142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank gratefully Pr. Cristina Minguillon (Laboratori de Quimica Farmaceutica, Facultat de Farmacia, Universitat de Barcelona, Avda.Diagonal s/n, E-08028 Barcelona, Spain) and her research group for their valuable collaboration and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fairouz Tazerouti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si-Ahmed, K., Tazerouti, F. & Badjah-Hadj-Ahmed, A.Y. Preparation and enantioseparation characteristics of three chiral stationary phases based on modified β-cyclodextrin for liquid chromatography. Anal Bioanal Chem 395, 507–518 (2009). https://doi.org/10.1007/s00216-009-2972-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2972-9

Keywords

Navigation