Skip to main content
Log in

Comparison of protein immobilisation methods onto oxidised and native carbon nanofibres for optimum biosensor development

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The properties of native and oxidised graphene layered carbon nanofibres are compared, and their utilisation in enzyme biosensor systems using different immobilisation methods are evaluated. The efficient oxidation of carbon nanofibres with concentrated H2SO4/HNO3 is confirmed by Raman spectroscopy while the introduction of carboxylic acid groups on the surface of the fibres by titration studies. The oxidised fibres show enhanced oxidation efficiency to hydrogen peroxide, while at the same time they exhibit a more efficient and selective interaction with enzymes. The analytical characteristics of biosensor systems based on the adsorption or covalent immobilisation of the enzyme glucose oxidase on carbon nanofibres are compared. The study reveals that carbon nanofibres are excellent substrates for enzyme immobilisation allowing the development of highly stable biosensor systems.

Immobilization of proteins on carbon nanofibres

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vo-Dinh T, Cullum BM, Stokes DL (2001) Sens Actuators B 74:2–11

    Article  Google Scholar 

  2. Haruyama T (2003) Adv Drug Deliv Rev 55:393–401

    Article  CAS  Google Scholar 

  3. Jain KK (2003) Expert Rev Mol Diagn 3:153–161

    Article  CAS  Google Scholar 

  4. Vamvakaki V, Fouskaki M, Chaniotakis NA (2008) Anal Lett 40:2271–2287

    Article  Google Scholar 

  5. Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijao L (2004) Biotech Adv 22:505–518

    Article  Google Scholar 

  6. Vaseashta A, Dimova-Malinovska D (2005) Sci Technol Adv Mater 6:312–318

    Article  CAS  Google Scholar 

  7. Gavalas VG, Chaniotakis NA (2000) Anal Chim Acta 404:67–73

    Article  CAS  Google Scholar 

  8. Sotiropoulou S, Chaniotakis NA (2005) Anal Chim Acta 530:199–204

    Article  CAS  Google Scholar 

  9. Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Biosens Bioelectron 18:211–215

    Article  CAS  Google Scholar 

  10. Gavalas VG, Chaniotakis NA (2000) Anal Chim Acta 409:131–135

    Article  CAS  Google Scholar 

  11. Nednoor P, Capaccio M, Gavalas VG, Meier MS, Anthony JE, Bachas LG (2004) Bioconjug Chem 15:12–15

    Article  CAS  Google Scholar 

  12. Chaniotakis NA (2007) Fullerene-based electrochemical detection methods for biosensing. In: Kumar C (ed) Nanomaterials for biosensors-Nanotechnologies for the life sciences-Vol 8. Wiley, Weinheim

    Google Scholar 

  13. Fan J, Yudasaka M, Miyawaki J, Ajima K, Murata K, Iijima S (2006) J Phys Chem B 110:1587–1591

    Article  CAS  Google Scholar 

  14. Sotiropoulou S, Chaniotakis NA (2003) Anal Bioanal Chem 375:103–105

    CAS  Google Scholar 

  15. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Nano Lett 3:727–730

    Article  CAS  Google Scholar 

  16. Boo H, Jeong RA, Park S, Kim KS, An KH, Lee YH, Han JH, Kim HC, Chung TD (2006) Anal Chem 78:617–620

    Article  CAS  Google Scholar 

  17. Joshi PP, Merchant SA, Wang Y, Schmidtke DW (2005) Anal Chem 77:3183–3188

    Article  CAS  Google Scholar 

  18. Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang YI, Wan Q (2006) Nano Lett 6:1632–1636

    Article  CAS  Google Scholar 

  19. Wang J, Liu G, Jan MR (2004) J Am Chem Soc 126:3010–3011

    Article  CAS  Google Scholar 

  20. Vamvakaki V, Tsagaraki K, Chaniotakis NA (2006) Anal Chem 78:5538–5542

    Article  CAS  Google Scholar 

  21. Vamvakaki V, Hatzimarinaki M, Chaniotakis NA (2008) Anal Chem 80:5970–5975

    Article  CAS  Google Scholar 

  22. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Anal Chem 81:2378–2382

    Article  CAS  Google Scholar 

  23. Kim SU, Lee KH (2004) Chem Phys Lett 400:253–257

    Article  CAS  Google Scholar 

  24. Hatzimarinaki M, Vamvakaki V, Chaniotakis NA (2009) J Mater Chem 19:428–433

    Article  CAS  Google Scholar 

  25. Vamvakaki V, Chaniotakis NA (2007) Sens Actuators B 126:193–197

    Article  Google Scholar 

  26. Wu L, Zhang X, Ju H (2007) Anal Chem 79:453–458

    Article  CAS  Google Scholar 

  27. Toebes ML, van Heeswijk JMP, Bitter JH, van Dillen AJ, de Jong KP (2004) Carbon 42:307–315

    Article  CAS  Google Scholar 

  28. Lakshminarayanan PV, Toghiani H, Pittman CU Jr (2004) Carbon 42:2433–2442

    Article  CAS  Google Scholar 

  29. Rasheed A, Howe JY, Dadmun MD, Britt PF (2007) Carbon 45:1072–1080

    Article  CAS  Google Scholar 

  30. Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I (2004) Carbon 42:1723–1729

    Article  CAS  Google Scholar 

  31. Baker SE, Colavita PE, Tse KY, Hamers RJ (2006) Chem Mater 18:4415–4422

    Article  CAS  Google Scholar 

  32. Baker SE, Tse KY, Hindin E, Nichols BM, Clare TL, Hamers RJ (2005) Chem Mater 17:4971–4978

    Article  CAS  Google Scholar 

  33. Wu L, Yan F, Ju H (2007) J Immunol Methods 322:12–19

    Article  CAS  Google Scholar 

  34. Weeks ML, Rahman T, Frymier PD, Islam SK, McKnight TE (2008) Sens Actuators B 133:53–59

    Article  Google Scholar 

  35. Barton SS, Evans MJB, Halliop E, MacDonald JAF (1997) Carbon 35:1361–1366

    Article  CAS  Google Scholar 

  36. Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) Carbon 37:1215–1221

    Article  CAS  Google Scholar 

  37. Filho AGS, Jorio A, Samsonidze GG, Dresselhaus G, Saito R, Dresselhaus MS (2003) Nanotechnology 14:1130–1139

    Article  Google Scholar 

  38. Endo M, Nishimura K, Kim YA, Hakamada K, Matushita T, Dresselhaus MS, Dresselhaus G (1999) J Mat Res 14:4474–1177

    Article  CAS  Google Scholar 

  39. Kinoshita K (1998) Carbon Electrochemical and physicochemical characteristics. Wiley, New York

    Google Scholar 

  40. Forzani ES, Zhang H, Nagahara LA, Amlani I, Tsui R, Tao N (2004) Nano Lett 4:1785–1788

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is being supported by the European Commission Programs “SANTS” (Contract No 033254) and “NANOMYC” (Contract No 036812). We thank Sevasti Papadogiorgaki and Raluca Buiculescu for the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Chaniotakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavyiannoudaki, V., Vamvakaki, V. & Chaniotakis, N. Comparison of protein immobilisation methods onto oxidised and native carbon nanofibres for optimum biosensor development. Anal Bioanal Chem 395, 429–435 (2009). https://doi.org/10.1007/s00216-009-2970-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2970-y

Keywords

Navigation