Analytical and Bioanalytical Chemistry

, Volume 395, Issue 2, pp 301–313 | Cite as

Current trends in the detection of peroxide-based explosives

Review

Abstract

The increased use of peroxide-based explosives (PBEs) in criminal and terrorist activity has created a demand for continued innovation in the detection of these agents. This review provides an update to a previous 2006 review on the detection of PBEs, with a focus in this report on luminescence and fluorescence methods, infrared and Raman spectroscopy, mass spectrometry, and electrochemical techniques. Newer developments in gas chromatography and high performance liquid chromatography methods are also discussed. One recent trend that is discussed is an emphasis on field measurements through the use of portable instruments or portable assay formats. An increase in the use of infrared spectroscopy and mass spectrometry for PBE analysis is also noted. The analysis of triacetone triperoxide has been the focus in the development of many of these methods, although hexamethylene triperoxide diamine has received increased attention in PBE detection during the last few years.

Keywords

Peroxide-based explosives Triacetone triperoxide Hexamethylene triperoxide diamine Explosives analysis 

References

  1. 1.
    Woffenstein R (1895) Chem Ber 28:2265–2269CrossRefGoogle Scholar
  2. 2.
    McKay G (2002) Kayaku Gakkaishi 63:323–329Google Scholar
  3. 3.
    Yeager K (2007) In: Woodfin R (ed) Trace chemical sensing of explosives. Wiley-Interscience, HobokenGoogle Scholar
  4. 4.
    Evans H, Tulleners A, Sanchez B, Rasmussen C (1986) J Forensic Sci 31:1119–1125Google Scholar
  5. 5.
    Oxley J, Smith J, Chen H, Cioffi E (2002) Thermochim Acta 338:215–225CrossRefGoogle Scholar
  6. 6.
    Legler L (1881) Chem Ber 14:602–604Google Scholar
  7. 7.
    Oxley J (2006) In: Schubert H, Kuznetson A (eds) Detection and disposal of improvised devices. Springer, New YorkGoogle Scholar
  8. 8.
    Schulte-Ladbeck R, Vogel M, Karst U (2006) Anal Bioanal Chem 386:559–565CrossRefGoogle Scholar
  9. 9.
    Meaney M, McGuffin V (2008) Anal Bioanal Chem 391:2557–2576CrossRefGoogle Scholar
  10. 10.
    Schulte-Ladbeck R, Kolla P, Karst U (2003) Anal Chem 75:731–735CrossRefGoogle Scholar
  11. 11.
    van Duin A, Zeiri Y, Dubnikova F, Kosloff R, Goddard W (5005) J Am Chem Soc 127:11053–11062CrossRefGoogle Scholar
  12. 12.
    Dubnikova F, Kosloff R, Almog J et al (2005) J Am Chem Soc 127:1146–1159CrossRefGoogle Scholar
  13. 13.
    Widmer L, Watson S, Schlatter K, Crowson A (2002) Analyst 127:1627–1632CrossRefGoogle Scholar
  14. 14.
    Muller D, Levy A, Shelef R, Abramovich-Bar S, Sonenfeld D, Tamiri T (2004) J Forensic Sci 49:935–938CrossRefGoogle Scholar
  15. 15.
    Oxley J (2008) In: Schubert H, Kuznetson A (eds) Detection of liquid explosives and flammable agents in connection with terrorism. Springer, Dordrecht, pp 27–38CrossRefGoogle Scholar
  16. 16.
    Laine D, Roske C, Cheng F (2008) Anal Chim Acta 608:56–60CrossRefGoogle Scholar
  17. 17.
    Lindley R, Normand E, McCulloch M et al (2008) Proc SPIE 7119:71190KCrossRefGoogle Scholar
  18. 18.
    Pumera M (2008) Electrophoresis 29:269–273CrossRefGoogle Scholar
  19. 19.
    Stambouli A, El Bouri A, Bouayoun T, Bellimam M (2004) Forensic Sci Int 146S:S191–S194CrossRefGoogle Scholar
  20. 20.
    National Research Council of the National Academies (2004) In: Existing and potential standoff explosives detection techniques. The National Academies Press, WashingtonGoogle Scholar
  21. 21.
    Wilson P, Prince B, McEwan M (2006) Anal Chem 78:575–579CrossRefGoogle Scholar
  22. 22.
    Bellamy A (1999) J Forensic Sci 44:603–608Google Scholar
  23. 23.
    Pumera M (2006) Electrophoresis 27:244–256CrossRefGoogle Scholar
  24. 24.
    Pacheco-Londono L, Primera O, Ramirez M, Ruiz O, Hernandez-Rivera S (2005) Proc SPIE 5778:317–326CrossRefGoogle Scholar
  25. 25.
    Wang J (2007) Electroanalysis 19:415–423CrossRefGoogle Scholar
  26. 26.
    Moore D (2007) Sens Imaging 8:9–38CrossRefGoogle Scholar
  27. 27.
    Mills A, Grosshans P, Snadden E (2009) Sens Actuators B 136:458–463CrossRefGoogle Scholar
  28. 28.
    Apblett A, Kiran B, Malka S, Materer N, Piquette A (2005) Ceram Trans 172:29–35Google Scholar
  29. 29.
    Sanchez J, Trogler W (2008) J Mater Chem 18:5134–5141CrossRefGoogle Scholar
  30. 30.
    Germain M, Knapp M (2008) Inorg Chem 47:9748–9750CrossRefGoogle Scholar
  31. 31.
    Malashikhin S, Finney N (2008) J Am Chem Soc 130:12846–12847CrossRefGoogle Scholar
  32. 32.
    Sella E, Shabat D (2008) Chem Commun 5701–5703Google Scholar
  33. 33.
    Wingert P, Mizukami H, Ostafin A (2007) Nanotechnology 18:1–7CrossRefGoogle Scholar
  34. 34.
    Oxley J, Smith J, Brady J, Dubnikova F, Kosloff R, Zeiri L (2008) Appl Spectrosc 62:906–915CrossRefGoogle Scholar
  35. 35.
    Pena A, Pacheco-Londono L, Figueroa J, Rivera-Montalvo L, Roman-Velazquez F, Hernandez-Rivera S (2005) Proc SPIE 5778:347358Google Scholar
  36. 36.
    Hiyoshi R, Nakamura J (2007) Propellants Explos Pyrotech 32:127–134CrossRefGoogle Scholar
  37. 37.
    Pacheco-Londono L, Primera-Pedrozo O, de la Torre L, Hernandez-Rivera S (2005) Proc SPIE 5816:180–185CrossRefGoogle Scholar
  38. 38.
    Pacheco-Londono LC, Pena AJ, Primera-Pedrozo OM et al (2004) Proc SPIE 5403:279–287CrossRefGoogle Scholar
  39. 39.
    Primera OM, Pacheco L, De la Torre LF, Hernandez SP, Chamberlain RT, Lareau RT (2004) In: Abstracts of papers, 227th ACS national meeting, Anaheim, 28 March-1 April, PHYS-405Google Scholar
  40. 40.
    Primera-Pedrozo OM, Pacheco-Londono LC, De la Torre-Quintana LF, Hernandez-Rivera SP, Chamberlain RT, Lareau RT (2004) Proc SPIE 5403:237–245CrossRefGoogle Scholar
  41. 41.
    Bauer C, Sharma A, Willer U et al (2008) Appl Phys B 92:327–333CrossRefGoogle Scholar
  42. 42.
    Hildenbrand J, Herbst J, Wollenstein J, Lambrecht A (2009) Proc SPIE 7222:72220BCrossRefGoogle Scholar
  43. 43.
    Lambrecht A, Hartwig S, Herbst J, Wollenstein J (2008) Proc SPIE 6901:69010VCrossRefGoogle Scholar
  44. 44.
    Lindley R, Normand E, Howieson I et al (2007) Proc SPIE 6741:67410PCrossRefGoogle Scholar
  45. 45.
    Dunayevskiy I, Tsekoun A, Prasanna M, Go R, Patel K (2007) Appl Opt 46:6397–6404CrossRefGoogle Scholar
  46. 46.
    Eckenrode B, Bartick E, Harvey S, Vucelick M, Wright B, Huff R (2001) Forensic Sci Commun 3Google Scholar
  47. 47.
    Santillan J, Brown C, Jalenak W (2007) Proc SPIE 6540:65400PCrossRefGoogle Scholar
  48. 48.
    Ahura Scientific (2005) First Defender – breakthrough rugged, handheld chemical identification system available to first responders. http://www.ahuracorp.com/about-ahura/press-releases/pr20050323.php. Accessed 15 June 2009
  49. 49.
    Ahura Scientific(2008) Ahura Scientific launches FTIR platform with introduction of TruDefender FT. http://www.ahurascientific.com/about-ahura/press-releases/pr20080131.php. Accessed 15 Jun 2009
  50. 50.
    Stokes R, Smith W, Foulger B, Lewis C (2008) Proc SPIE 7119:71190ICrossRefGoogle Scholar
  51. 51.
    Mostak P (2008) In: Schubert H, Kuznetson A (eds) Detection of liquid explosives and flammable agents in connection with terrorism. Springer, Dordrecht, pp 15–25CrossRefGoogle Scholar
  52. 52.
    Ko H, Chang S, Tsukruk V (2009) ACS NANO 3:181–188CrossRefGoogle Scholar
  53. 53.
    Sigman M, Clark C, Caiano T, Mullen R (2008) Rapid Commun Mass Spectrom 22:84–90CrossRefGoogle Scholar
  54. 54.
    Sigman M, Clark C, Painter K et al (2009) Rapid Commun Mass Spectrom 23:349–356CrossRefGoogle Scholar
  55. 55.
    Armitt D, Zimmermann P, Ellis-Steinborner S (2008) Rapid Commun Mass Spectrom 22:950–958CrossRefGoogle Scholar
  56. 56.
    Oxley J, Smith J, Chen H (2002) Propellants Explos Pyrotech 27:209–216CrossRefGoogle Scholar
  57. 57.
    Oxley J, Smith J, Kirschenbaum L, Marimganti S, Vadlamannati S (2008) J Forensic Sci 53:690–693CrossRefGoogle Scholar
  58. 58.
    Rasanen R, Nousiainen M, Perakorpi K et al (2008) Anal Chim Acta 623:59–65CrossRefGoogle Scholar
  59. 59.
    Kende A, Lebics F, Eke Z, Torkos K (2008) Microchem Acta 163:335–338CrossRefGoogle Scholar
  60. 60.
    Sigman M, Clark C, Fidler R, Geiger C, Clausen C (2006) Rapid Commun Mass Spectrom 20:2851–2857CrossRefGoogle Scholar
  61. 61.
    Cotte-Rodriquez I, Chen H, Cooks R (2006) Chem Commun 953–955Google Scholar
  62. 62.
    Cotte-Rodriquez I, Cooks R (2006) Chem Commun 2968–2970Google Scholar
  63. 63.
    Cotte-Rodriquez I, Hernandez-Soto H, Chen H, Cooks R (2008) Anal Chem 80:1512–1519CrossRefGoogle Scholar
  64. 64.
    Pena-Quevedo A, Cody R, Mina-Camilde N, Ramos M, Hernandez-Rivera S (2007) Proc SPIE 6538:653828CrossRefGoogle Scholar
  65. 65.
    Mullen C, Huestis D, Coggiola M, Oser H (2006) Int J Mass Spectrom 252:69–72CrossRefGoogle Scholar
  66. 66.
    Mullen C, Irwin A, Pond B, Huestis D, Coggiola M, Oser H (2006) Anal Chem 78:3807–3814CrossRefGoogle Scholar
  67. 67.
    Schramm E, Muhlberger F, Mitschke S et al (2008) Appl Spectrosc 62:238–247CrossRefGoogle Scholar
  68. 68.
    Lu D, Cagan A, Munoz R, Tangkuaram T, Wang J (2006) Analyst 131:1279–1281CrossRefGoogle Scholar
  69. 69.
    Karyakin A, Gorton L (2000) Anal Chem 72:1720–1723CrossRefGoogle Scholar
  70. 70.
    Munoz R, Lu D, Cagan A, Wang J (2007) Analyst 132:560–565CrossRefGoogle Scholar
  71. 71.
    Laine D, Cheng F (2009) Microchem J 91:125–128CrossRefGoogle Scholar
  72. 72.
    Bohrer F, Colesniuc C, Park J, Schuller I, Kummel A, Trogler W (2008) J Am Chem Soc 130:3712–3713CrossRefGoogle Scholar
  73. 73.
    Schulte-Ladbeck R, Edelmann A, Quintas G, Lendl B, Karst U (2006) Anal Chem 78:8150–8155CrossRefGoogle Scholar
  74. 74.
    Staples E (2004) In: Gardner J, Yinon J (eds) Electronic noses & sensors for the detection of explosives. Kluwer, DordrechtGoogle Scholar
  75. 75.
    Zuck A, Greenblatt J, Zifman A et al (2008) J Energ Mater 26:163–180CrossRefGoogle Scholar
  76. 76.
    Oxley J, Smith J, Luo W (2007) Propellants Explos Pyrotech, in pressGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of NebraskaLincolnUSA

Personalised recommendations