Skip to main content

Advertisement

Log in

Temporal ratiometry to assess dynamic concentration distributions of fluorescent molecules in single live cells during continuous diffusional dosing

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The introduction of specific molecules into live cells is a widely used approach to probe cellular mechanisms. Recently, we have reported on the sustained dosing of molecules into single cells via a microscopic diffusion port. Here we describe temporal ratiometry, a method to reconstruct intracellular concentration distribution of the delivered molecules as it varies in time during dosing. To characterize this method, we analyzed fluorescence intensity maps obtained during delivery of Lucifer Yellow CH, LY, a polar fluorophore into A7r5 vascular smooth muscle cells, normal rat kidney epithelial cells (NRKE), and MCF-7 human breast cancer cells. Temporal ratiometry indicates a linear increase in concentration of LY in these cells with a nearly uniform distribution during 20 min of delivery. The method cancels the effects of varying cell height and variable accessible volume on the measured intensities at different locations within the cell. Temporal ratiometry will be useful to estimate dynamic changes in intracellular concentration distributions and thus, facilitate the understanding of transport, binding, sequestration, and efflux of molecules introduced into cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun LP, Seemann J, Goldstein JL et al (2007) Proc Natl Acad Sci USA 104:6519–6526

    Article  CAS  Google Scholar 

  2. Pace RW, Mackay DD, Feldman JL et al (2007) J Physiol 580:485–496

    Article  CAS  Google Scholar 

  3. Valiunas V, Polosina YY, Miller H et al (2005) J Physiol 568:459–468

    Article  CAS  Google Scholar 

  4. Badorff C, Brandes RP, Popp R et al (2003) Circulation 107:1024–1032

    Article  Google Scholar 

  5. Heyman NS, Burt JM (2008) Biophys J 94:840–854

    Article  CAS  Google Scholar 

  6. Roska B, Nemeth E, Orzo L et al (2000) J Neurosci 20:1941–1951

    CAS  Google Scholar 

  7. Gratzl M, Lu HW, Matsumoto T et al (1999) Anal Chem 71:2751–2756

    Article  CAS  Google Scholar 

  8. Gratzl M, Yi C, Bright GR (2008) Anal Chem 80:9310–9315

    Article  CAS  Google Scholar 

  9. Lubyphelps K, Castle PE, Taylor DL et al (1987) Proc Natl Acad Sci USA 84:4910–4913

    Article  CAS  Google Scholar 

  10. Oheim M, Naraghi M, Muller TH et al (1998) Cell Calcium 24:71–84

    Article  CAS  Google Scholar 

  11. Chaytor AT, Martin PEM, Edwards DH et al (2001) Am J Physiol-Heart Circ Physiol 280:H2441–H2450

    CAS  Google Scholar 

  12. Laing JG, Westphale EM, Engelmann GL et al (1994) J Memb Biol 139:31–40

    Article  CAS  Google Scholar 

  13. Beyer EC, Reed KE, Westphale EM et al (1992) J Memb Biol 127:69–76

    Article  CAS  Google Scholar 

  14. Gratzl M, Yi C (1993) Anal Chem 65:2085–2088

    Article  CAS  Google Scholar 

  15. Tsien RY, Rink TJ (1980) Biochim Biophys Acta 599:623–638

    Article  CAS  Google Scholar 

  16. Ammann D (1986) Ion-selective microelectrodes. Springer, Berlin

    Google Scholar 

  17. Brink PR, Ramanan SV (1985) Biophys J 48:299–309

    Article  CAS  Google Scholar 

  18. Eckert R (2006) Biophys J 91:565–579

    Article  CAS  Google Scholar 

  19. Valiunas V (2002) J Gen Physiol 119:147–164

    Article  CAS  Google Scholar 

  20. Hernandez VH, Bortolozzi M, Pertegato V et al (2007) Nat Methods 4:353–358

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. George Dubyak, Maria Hatzoglou, and Ruth Keri for the gift of A7r5, NRKE, and MCF-7 cells, respectively, and Dr. Sumitha Nair for critical comments and useful suggestions on the manuscript. This work was partly supported by the National Science Foundation, USA Grant 0352443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklόs Gratzl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oruganti, P., Gratzl, M. Temporal ratiometry to assess dynamic concentration distributions of fluorescent molecules in single live cells during continuous diffusional dosing. Anal Bioanal Chem 395, 449–456 (2009). https://doi.org/10.1007/s00216-009-2961-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2961-z

Keywords

Navigation