Analytical and Bioanalytical Chemistry

, Volume 395, Issue 3, pp 601–609 | Cite as

Plasma stencilling methods for cell patterning

  • Jean-Philippe Frimat
  • Heike Menne
  • Antje Michels
  • Silke Kittel
  • Raffael Kettler
  • Sabine Borgmann
  • Joachim Franzke
  • Jonathan West
Original Paper


In this paper we describe plasma stencilling techniques for patterning 10 mammalian cell lines on hydrophobic and cell repellent poly(dimethylsiloxane) (PDMS), methylated glass and bacterial grade polystyrene surfaces. An air plasma produced with a Tesla generator operating at atmospheric pressure was used with microengineered stencils for patterned surface oxidation, selectively transforming the surface to a hydrophilic state to enable cell adhesion and growth. Plasma stencilling obviates the need for directly patterning cell adhesion molecules. Instead, during cell culture, adhesion proteins from the media assemble in a bioactive form on the hydrophilic regions. Critically, the removal of protein patterning prior to cell culture provides the option to also use PDMS–PDMS plasma bonding to incorporate cell patterns within microfluidic systems. Linear patterns were generated using PDMS microchannel stencils, and polyimide stencils with through holes were used for the production of cellular arrays. For the production of smaller cellular arrays, a novel microcapillary-based dielectric barrier discharge system was developed. A numerical method to characterise the cell patterns is also introduced and was used to demonstrate that plasma stencilling is highly effective, with complete patterns confined during long term cell culture (>10 days). In summary, plasma stencilling is simple, rapid, inexpensive, reproducible and a potentially universal cell line patterning capability.


Microfluidic plasma stencilling for generating cell lines.


Cell patterning Plasmas Stencil Poly(dimethylsiloxane) Dielectric barrier discharge Microfluidics 

Supplementary material

216_2009_2824_Fig7_ESM.gif (15 kb)
Fig. S1

White light interferometry analysis of polystyrene (BGPS) surface roughening caused by plasma stencilling for 1 s (a), 3 s (b) and 5 s (c) (GIF 14.6 kb)

216_2009_2824_Fig7_ESM.tif (7.6 mb)
Fig. S1High resolution image file (TIFF 7.58 mb).
216_2009_2824_Fig8_ESM.gif (48 kb)
Fig. S2

SEM image of BGPS after prolonged (5 s) plasma treatment (GIF 47.6 kb)

216_2009_2824_Fig8_ESM.tif (2.3 mb)
Fig. S2High resolution image file (TIFF 2.30 mb).
216_2009_2824_Fig9_ESM.gif (69 kb)
Fig. S3

PDMS microfluidic system incorporating patterned cells. Plasma stencilling was used for both cell patterning and to enable bonding between both PDMS layers (GIF 69 kb)

216_2009_2824_Fig9_ESM.tif (6.6 mb)
Fig. S3High resolution image file (TIFF 6.57 mb).
216_2009_2824_MOESM1_ESM.docx (12 kb)
Table S1 (DOC 12 kb)


  1. 1.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Science 276:1425–1428CrossRefGoogle Scholar
  2. 2.
    Thomas CH, Collier JH, Sfeir CS, Healy KE (2002) Proc Natl Acad Sci USA 99:1972–1977CrossRefGoogle Scholar
  3. 3.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Dev Cell 6:483–495CrossRefGoogle Scholar
  4. 4.
    Théry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y, Sibarita J-B, Bornens M (2006) Proc Natl Acad Sci USA 103:19771–19776CrossRefGoogle Scholar
  5. 5.
    Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM, Ingber DE (1994) Science 264:696–698CrossRefGoogle Scholar
  6. 6.
    Li N, Tourovskaia A, Folch A (2003) Crit Rev Biomed Eng 31:423–488CrossRefGoogle Scholar
  7. 7.
    Xia Y, Whitesides GM (1998) Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar
  8. 8.
    Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  9. 9.
    López GP, Biebuyck HA, Härter R, Kumar A, Whitesides GM (1993) J Am Chem Soc 115:10774–10781CrossRefGoogle Scholar
  10. 10.
    Bernard A, Delamarche E, Schmid H, Michel B, Bosshard HR, Biebuyck H (1998) Langmuir Lett 14:2225–2229Google Scholar
  11. 11.
    Renault JP, Bernard A, Juncker D, Michel B, Bosshard HR, Delamarche E (2002) Angew Chem Int Ed 41:2320–2323CrossRefGoogle Scholar
  12. 12.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20:2363–2376CrossRefGoogle Scholar
  13. 13.
    Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H (1997) Science 276:779–781CrossRefGoogle Scholar
  14. 14.
    Folch A, Toner M (1998) Biotechnol Prog 14:388–392CrossRefGoogle Scholar
  15. 15.
    Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ, Choi IS, Ingber DE, Whitesides GM (2000) Proc Natl Acad Sci USA 97:2408–2413CrossRefGoogle Scholar
  16. 16.
    Ostuni E, Kane R, Chen CS, Ingber DE, Whitesides GM (2000) Langmuir 16:7811–7819CrossRefGoogle Scholar
  17. 17.
    Rhee SW, Taylor AM, Tu CH, Cribbs DH, Cotman CW, Jeon NL (2004) Lab Chip 5:102–107CrossRefGoogle Scholar
  18. 18.
    Detrait E, Lhoest J-B, Knoops B, Bertrand P, van den Bosch de Aguilar P (1998) J Neurosci Meth 84:193–204CrossRefGoogle Scholar
  19. 19.
    Tourovskaia A, Barber T, Wickes BT, Hirdes D, Grin B, Castner DG, Healy KE, Folch A (2003) Langmuir 19:4754–4764CrossRefGoogle Scholar
  20. 20.
    Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Tissue Eng 11:1–18CrossRefGoogle Scholar
  21. 21.
    Kim J, Chaudhury MK, Owen MJ (2000) J Colloid Interface Sci 266:231–236CrossRefGoogle Scholar
  22. 22.
    Delamarche E, Bernard A, Schmid H, Bietsch A, Michel B, Biebuyck H (1998) J Am Chem Soc 120:500–508CrossRefGoogle Scholar
  23. 23.
    West J, Michels A, Kittel S, Jacob P, Franzke J (2007) Lab Chip 7:981–983CrossRefGoogle Scholar
  24. 24.
    Dewez JL, Schneider YJ, Rouxhet PG (1996) J Biomed Mat Res 30:373–383CrossRefGoogle Scholar
  25. 25.
    van Kooten TG, von Recum AF (1999) Tissue Eng 5:223–240CrossRefGoogle Scholar
  26. 26.
    Patrito N, McCague C, Norton PR, Petersen NO (2007) Langmuir 23:715–719CrossRefGoogle Scholar
  27. 27.
    Beamson G, Briggs D (1992) High resolution XPS of organic polymers: The Scienta ESCA 300 Database. Wiley, ChichesterGoogle Scholar
  28. 28.
    De Silva MN, Desai R, Odde DJ (2004) Biomed Microdev 6:219–222CrossRefGoogle Scholar
  29. 29.
    Curtis SG, Forrester JV (1984) J Cell Sci 71:17–35Google Scholar
  30. 30.
    Underwood PA, Steele JG, Dalton BA (1993) J Cell Sci 104:793–803Google Scholar
  31. 31.
    Sigal GB, Mrksich M, Whitesides GM (1998) J Am Chem Soc 120:3464–3473CrossRefGoogle Scholar
  32. 32.
    Roach P, Farrar D, Perry CC (2005) J Am Chem Soc 127:8168–8173CrossRefGoogle Scholar
  33. 33.
    Kidoaki S, Matsuda T (1999) Langmuir 15:7639–7646CrossRefGoogle Scholar
  34. 34.
    Sethuraman A, Han M, Kane RS, Belfort G (2004) Langmuir 20:7779–7788CrossRefGoogle Scholar
  35. 35.
    Kim J, Somorjai GA (2003) J Am Chem Soc 125:3150–3158CrossRefGoogle Scholar
  36. 36.
    Johann RM, Baiotto C, Renaud P (2007) Biomed Microdev 9:475–485CrossRefGoogle Scholar
  37. 37.
    Wright D, Rajalingam B, Karp JM, Selvarasah S, Ling Y, Yeh J, Langer R, Dokmeci MR, Khademhosseini A (2008) J Biomed Mat Res 85A:530–538CrossRefGoogle Scholar
  38. 38.
    Chai J, Li B, Kwok DY (2005) Appl Phys Lett 86:034107–034107.4CrossRefGoogle Scholar
  39. 39.
    Heming R, Michels A, Olenici SB, Tombrink S, Franzke J (2009) Anal Bioanal Chem. doi:10.1007/s00216-009-2753-5
  40. 40.
    Tan HML, Fukuda H, Akagi T, Ichiki T (2007) Thin Solid Films 515:5172–5178CrossRefGoogle Scholar
  41. 41.
    Kaji H, Kawashima T, Nishizawa M (2006) Langmuir 25:10784–10787CrossRefGoogle Scholar
  42. 42.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2003) Chem Biol 10:123–130CrossRefGoogle Scholar
  43. 43.
    Chaudhury MK, Whitesides GM (1992) Science 255:1230–1232CrossRefGoogle Scholar
  44. 44.
    Chen H-Y, McClelland AA, Chen Z, Lahann J (2008) Anal Chem 80:4119–4124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jean-Philippe Frimat
    • 1
  • Heike Menne
    • 1
  • Antje Michels
    • 1
  • Silke Kittel
    • 1
  • Raffael Kettler
    • 1
  • Sabine Borgmann
    • 1
  • Joachim Franzke
    • 1
  • Jonathan West
    • 1
  1. 1.ISAS—Institute for Analytical SciencesDortmundGermany

Personalised recommendations