Skip to main content
Log in

Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the combined set-up of on-line chemical analysis of gas phase by single-photon ionisation/resonance enhanced multiphoton ionisation–time-of-flight mass spectrometry (SPI/REMPI-TOFMS) and on-line particle size analysis by differential electrical mobility particle spectrometry (DMS 500) for the investigation of fresh cigarette mainstream smoke. SPI is well suited for the investigation of a great variety of organic species, whereas REMPI is highly sensitive for aromatic compounds. Gas phase measurements of filtered and unfiltered smoke are possible with the SPI/REMPI-TOFMS in order to determine the influence of the presence of particles on the chemical composition of the gas phase. Initial results are shown for the characterisation and comparison of three pure Virginia tobacco research cigarettes having filter ventilations of 0%, i.e. no filter ventilation, 35% and 70% ventilation. The three cigarette types are smoked under two different smoking regimes, a standard regime using puff parameters equivalent to the conventional International Standard Organisation regime and a more intense smoking regime. For the gas phase, qualitative puff-by-puff resolved yields of three selected compounds (acetaldehyde, phenol and styrene) are shown and compared. For particulate matter, particle number, count median diameter and total surface area are illustrated on a puff-by-puff basis. Yields of the chemicals analysed, puff number and surface area are in good agreement with the intensity of the smoking regime and the dilution of smoke by filter ventilation. However, gaseous compounds are influenced differently, depending whether an absolute particle filter is present or not, i.e. they can be totally removed (phenol), partially removed (styrene) or not affected (acetaldehyde). For particle analysis, the count median diameter decreases from puff to puff and is strongly dependent on the smoking regime and ventilation rate. Thereby, 0% ventilated cigarettes smoked under the intense regime result in the smallest count median diameters of ca. 180 nm, whereas 70% ventilated cigarettes smoked with a standard regime lead to the largest values of up to 280 nm. As particle diameter increases, particle number decreases as a consequence of increasing time for particle coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baker RR (1999) Smoke chemistry in tobacco: production, chemistry, and technology. Davis LD, Nielsen MT (eds.) Blackwell Science, Oxford, U. K.

  2. Gaworski CL, Dozier MM, Eldridge SR, Morrissey R, Rajendran N, Gerhart JM (1998) Inhal Toxicol 10:857–873

    Article  CAS  Google Scholar 

  3. Norman V (1977) Rec. Adv Tob Sci 3:28–58

    CAS  Google Scholar 

  4. Holtzclaw J, Rose S, Wyatt J, Rounbehler D, Fine D (1984) Anal Chem 56:2952–2956

    Article  CAS  Google Scholar 

  5. Baren RE, Parrish ME, Shafer KH, Harward CN, Shi Q, Nelson DD, MacManus JB, Zahniser MS (2004) Spectrochim Acta A 60:3437–3447

    Article  Google Scholar 

  6. Vilcins G (1975) Beitr Tabakforsch Int 8(4):181–185

    CAS  Google Scholar 

  7. Ceschini P, Lafaye A (1976) Beitr Tabakforsch Int 8(6):378–381

    CAS  Google Scholar 

  8. Parrish ME, Lyons-Hart JL, Shafer KH (2001) Vib Spectrosc 27:29–42

    Article  CAS  Google Scholar 

  9. Li S, Banyasz JL, Parrish ME, Lyons-Hart J, Shafer KH (2002) J Anal Appl Pyrol 65:137–145

    Article  CAS  Google Scholar 

  10. Parrish ME, Harward CN, Vilcins G (1986) Beitr Tabakforsch Int 13(4):169–181

    Google Scholar 

  11. Parrish ME, Harward CN (2000) Appl Spectrosc 54(11):1665–1677

    Article  CAS  Google Scholar 

  12. Shi Q, Nelson DD, McManus JB, Zahniser MS, Parrish ME, Baren RE, Shafer KH, Harward CN (2003) Anal Chem 75:5180–5190

    Article  CAS  Google Scholar 

  13. Plunkett S, Parrish ME, Shafer KH, Nelson D, Shorter J, Zahniser M (2001) Vib Spectrosc 27:53–63

    Article  CAS  Google Scholar 

  14. Plunkett S, Parrish ME, Shafer KH, Shorter JH, Nelson DD, Zahniser MS (2002) Spectrochim Acta A 58:2505–2517

    Article  Google Scholar 

  15. Thomas CE, Koller KB (2001) Beitr Tabakforsch Int 19(7):345–351

    CAS  Google Scholar 

  16. Li S, Olegario RM, Banyasz JL, Shafer KH (2003) J Anal Appl Pyrol 66:156–163

    Article  Google Scholar 

  17. Wagner KA, Higby R, Stutt K (2005) Beitr Tabakforsch Int 21(5):273–279

    CAS  Google Scholar 

  18. Mitschke S, Adam T, Streibel T, Baker RR, Zimmermann R (2005) Anal Chem 77(8):2288–2296

    Article  CAS  Google Scholar 

  19. Zimmermann R, Heger HJ, Kettrup A, Boesl U (1997) Rapid Commun Mass Spectrom 11:1095–1102

    Article  Google Scholar 

  20. Boesl U (2000) J Mass Spectrom 35:289–304

    Article  CAS  Google Scholar 

  21. Gittins CM, Castaldi MJ, Senkan SM, Rohlfing EA (1997) Anal Chem 69(3):286–293

    Article  CAS  Google Scholar 

  22. Oudejans L, Touati A, Gullett BK (2004) Anal Chem 76:2517–2524

    Article  CAS  Google Scholar 

  23. McEnally CS, Pfefferle LD, Mohammed RK, Smooke MD, Colket MB (1999) Anal Chem 71:364–372

    Article  CAS  Google Scholar 

  24. Shi YJ, Hu XK, Mao DM, Dimov SS, Lipson RH (1998) Anal Chem 70:4534–4539

    Article  CAS  Google Scholar 

  25. Mühlberger F, Zimmermann R, Kettrup A (2001) Anal Chem 73(15):3590–3604

    Article  Google Scholar 

  26. Adam T, Mitschke S, Streibel T, Baker RR, Zimmermann R (2006) Chem Res Toxicol 19:511–520

    Article  CAS  Google Scholar 

  27. Adam T, Mitschke S, Streibel T, Baker RR, Zimmermann R (2006) Anal Chim Acta 572:219–229

    Article  CAS  Google Scholar 

  28. Adam T, Baker RR, Zimmermann R (2007) Anal Bioanal Chem 387:575–584

    Article  CAS  Google Scholar 

  29. British Standards Institution (2000) BS 5202-14:2000 ISO 4387:2000

  30. Health Canada Tobacco Control Program (1999) Test Method T-115:1-5

  31. Symonds JPR, Reavell KSJ, Olfert JS, Campbell BW, Swift SJ (2007) J Aerosol Sci 38:52–68

    Article  CAS  Google Scholar 

  32. Reavell K (2002) Proc Aeros Soc 121 - 124

  33. Reavell K, Hands T, Collings N (2002) SAE Tech. Pap. 2002-01-2714

  34. Norman A (1999) 11 B. Cigarette design and materials in Tobacco. Production, Chemistry and Technology Davis LD, Nielsen MT (eds.) Blackwell Science, Oxford, UK

  35. Mühlberger F, Hafner K, Kaesdorf S, Ferge T, Zimmermann R (2004) Anal Chem 76(22):6753–6764

    Article  Google Scholar 

  36. Streibel T, Hafner K, Mühlberger F, Adam T, Zimmermann R (2006) Appl Spectros 60:72–79

    Article  CAS  Google Scholar 

  37. Hafner KM (2004) PhD thesis, Technische Universität München

  38. Mitschke S (2007) PhD thesis, Technische Universität München

  39. Mirme A, Noppel M, Piel I, Salm J, Tamm E, Tammet H (1984) Conference Proceeding: 11th international conference on atmospheric aerosols: 155-159

  40. Baker RR (2002) Beitr Tabakforsch Int 20(1):23–41

    Google Scholar 

  41. Wartman WB Jr, Cogbill EC, Harlow ES (1959) Anal Chem 31:1705–1709

    Article  CAS  Google Scholar 

  42. Dube MF, Green CR (1982) Rec Adv Tob Sci 8:42–102

    Google Scholar 

  43. Baker RR (1977) Combust Flame 30:21–32

    Article  CAS  Google Scholar 

  44. Baker RR, Robinson DP (1990) Rec Adv Tob Sci 16:3–101

    Google Scholar 

  45. Kalaitzoglou M, Samara C (2005) Beitr Tabakforsch Int 21(6):331–344

    CAS  Google Scholar 

  46. Kalaitzoglou M, Samara C (2006) Food Chem 44:1432–1442

    Article  CAS  Google Scholar 

  47. Baker RR, Dixon M (2006) Inhal Toxicol 18:255–294

    Article  CAS  Google Scholar 

  48. Bernstein DM (2004) Inhal Toxicol 16:675–689

    Article  CAS  Google Scholar 

  49. Anjilvel S, Asgharian B (1995) Fund Appl Toxicol 28:41–50

    Article  CAS  Google Scholar 

  50. Pankow JF, 11 (2001) Chem Res Toxicol 14:1465–1481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Adam or John McAughey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, T., McAughey, J., McGrath, C. et al. Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke. Anal Bioanal Chem 394, 1193–1203 (2009). https://doi.org/10.1007/s00216-009-2784-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2784-y

Keywords

Navigation