Abstract
After over 30 years of development, surface-enhanced Raman spectroscopy (SERS) is now facing a very important stage in its history. The explosive development of nanoscience and nanotechnology has assisted the rapid development of SERS, especially during the last 5 years. Further development of surface-enhanced Raman spectroscopy is mainly limited by the reproducible preparation of clean and highly surface enhanced Raman scattering (SERS) active substrates. This review deals with some substrate-related issues. Various methods will be introduced for preparing SERS substrates of Ag and Au for analytical purposes, from SERS substrates prepared by electrochemical or vacuum methods, to well-dispersed Au or Ag nanoparticle sols, to nanoparticle thin film substrates, and finally to ordered nanostructured substrates. Emphasis is placed on the analysis of the advantages and weaknesses of different methods in preparing SERS substrates. Closely related to the application of SERS in the analysis of trace sample and unknown systems, the existing cleaning methods for SERS substrates are analyzed and a combined chemical adsorption and electrochemical oxidation method is proposed to eliminate the interference of contaminants. A defocusing method is proposed to deal with the laser-induced sample decomposition problem frequently met in SERS measurement to obtain strong signals. The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.
This is a preview of subscription content,
to check access.










Similar content being viewed by others
References
Pettinger B (1992) In: Lipkowski J, Ross PN (eds) Adsorption of molecules at metal electrodes. VCH, New York, pp 285–345
McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley-Interscience, New York
Smith E, Dent G (2005) Modern Raman spectroscopy. Wiley, New York
Hartschuh A (2008) Angew Chem Int Ed 47:8178–8191
Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Chem Phys Lett 26:163–166
Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20
Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217
Tian ZQ (ed) (2005) Journal Raman Spectrosc 36:465–747
Brown R, Milton MJT, Smith WE (eds) (2006) Faraday Discuss 132:1–340
Graham D, Goodcare R (eds) (2008) Chem Soc Rev 37:873–1076
Furtak TE, Chang RK (1982) Surface enhanced Raman scattering. Plenum, New York
Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143–1212
Moskovits M (2005) J Raman Spectrosc 36:485–496
Tian ZQ (2006) Faraday Discuss 132:227–247
Ding SY, Wu DY, Yang ZL, Ren B, Xu X, Tian ZQ (2008) Chem J Chin Univ Chin 29:2569–2581
Gersten JI, Birke RL, Lombardi JR (1979) Phys Rev Lett 43:147–150
Burstein E, Chen YJ, Chen CY, Lundquist S, Tosatti E (1979) Solid State Commun 29:567–570
Otto A (1984) In: Cardona M, Guntherodt G (eds) Light scattering in solids. Springer, Berlin, pp 289–418
Moskovits M (1985) Rev Mod Phys 57:783–828
Gersten JI (1980) J Chem Phys 73:3023–3037
Hulteen JC, Van Duynea RP (1995) J Vac Sci Technol A 13:1553–1558
Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267–297
Natan MJ (2006) Faraday Discuss 132:321–328
Ackermann KR, Henkel T, Popp J (2007) Chemphyschem 8:2665–2670
Bell SEJ, Sirimuthu NMS (2008) Chem Soc Rev 37:1012–1024
Jarvis RM, Johnson HE, Olembe E, Panneerselvam A, Malik MA, Afzaal M, O’Brien P, Goodacre R (2008) Analyst 133:1449–1452
Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Nano Lett 6:2630–2636
Kneipp J, Kneipp H, Kneipp K (2008) Chem Soc Rev 37:1052–1060
Mulvihill M, Tao A, Benjauthrit K, Arnold J, Yang P (2008) Angew Chem Int Ed 47:6456–6460
Evanoff DD, Heckel J, Caldwell TP, Christensen KA, Chumanov G (2006) J Am Chem Soc 128:12618–12619
Jarvis RM, Law N, Shadi LT, O’Brien P, Lloyd JR, Goodacre R (2008) Anal Chem 80:6741–6746
Qian XM, Zhou X, Nie SM (2008) J Am Chem Soc 130:14934–14935
Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463–9483
Tian ZQ, Ren B (2003) In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, New York, pp 572–659
Gao P, Weaver MJ (1985) J Phys Chem 89:5040–5070
Ren B, Liu GK, Lian XB, Yang ZL, Tian ZQ (2007) Anal Bioanal Chem 388:29–45
Fleischmann M, Tian ZQ, Li LJ (1987) J Electroanal Chem 217:397–410
Wing L, Leung H, Weaver MJ (1987) J Am Chem Soc 109:5113–5119
Weaver MJ, Zou SZ, Chan HYH (2000) Anal Chem 72:38A–47A
Rowe JE, Shank CW, Zwemer DA, Murray CA (1980) Phys Rev Lett 44:1770–1773
Moskovits M (1983) Chem Phys Lett 98:498–502
Knight DS, Weimer R, Pilione L, White WB (1990) Appl Phys Lett 56:1320–1322
Eickmans J, Otto A, Goldmann A (1986) Surf Sci 171:415–441
Taylor CE, Pemberton JE, Goodman GG, Schoenfisch MH (1999) Appl Spectrosc 53:1212–1221
Pileni MP (2007) J Phys Chem C 111:9019–9038
Frens G (1973) Nat Phys Sci 241:20–22
Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 75:790–798
Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1925
Sun YG, Xia YN (2002) Science 298:2176–2179
Sau TK, Murphy CJ (2004) J Am Chem Soc 126:8648–8649
Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Phys Rev Lett 78:1667–1670
Nie SM, Emory SR (1997) Science 275:1102–1106
Wang DS, Chew H, Kerker M (1980) Appl Opt 19:2256–2257
Kerker M (1987) J Colloid Interface Sci 118:1
Emery SR, Haskins WE, Nie SM (1998) J Am Chem Soc 120:8009–8010
Krug JT, Wang GD, Emory SR, Nie SM (1999) J Am Chem Soc 121:9208–9214
Gersten JI (1980) J Chem Phys 72:5779–5780
Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677
Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Anal Chem 77:3261–3266
Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2007) Nano Lett 7:1591–1597
Link S, Mohamed MB, El-Sayed MA (1999) J Phys Chem B 103:3073–3077
Parker WL, Hexter RM, Siedle AR (1984) Chem Phys Lett 107:96–98
Tian ZQ, Ren B, Mao BW (1997) J Phys Chem B 101:1338–1346
Srnova I, Vlckova B, Baumruk V (1997) J Mol Struct 410–411:201–203
Guo L, Huang QJ, Li XY, Yang SH (2001) Phys Chem Chem Phys 3:1661–1665
Gomez R, Perez JM, Solla-Gullon J, Montiel V, Aldaz A (2004) J Phys Chem B 108:9943–9949
Kim NH, Kim K (2004) Chem Phys Lett 393:478–482
Cui L, Wang A, Wu DY, Ren B, Tian ZQ (2008) J Phys Chem C 112:17618–17624
Xiong YJ, McLellan JM, Chen JY, Yin YD, Li ZY, Xia YN (2005) J Am Chem Soc 127:17118–17127
Tian ZQ, Ren B, Li JF, Yang ZL (2007) Chem Commun 3514–3534
Tian ZQ, Yang ZL, Ren B, Li JF, Zhang Y, Lin XF, Hu JW, Wu DY (2006) Faraday Discuss 132:159–170
Wu DY, Li JF, Ren B, Tian ZQ (2008) Chem Soc Rev 37:1025–1041
Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Phys Rev E 57:R6281–R6284
Kneipp K, Kneipp H, Manoharan R, Hanlon EB, Itzkan I, Dasari RR, Feld MS (1998) Appl Spectrosc 52:1493–1497
Keating CD, Kovaleski KM, Natan MJ (1998) J Phys Chem B 102:9404–9413
Bell SEJ, Sirimuthu NMS (2004) Analyst 129:1032–1036
Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Langmuir 19:4784–4790
Qian XM, Nie SM (2008) Chem Soc Rev 37:912–920
McCabe AF, Eliasson C, Prasath RA, Hernandez-Santana A, Stevenson L, Apple I, Cormack PAG, Graham D, Smith WE, Corish P, Lipscomb SJ, Holland ER, Prince PD (2006) Faraday Discuss 132:303–308
Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) J Phys Chem B 110:4002–4006
Kim K, Lee HB, Shin KS (2008) Langmuir 24:5893–5898
Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Science 267:1627–1632
Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735–743
Grabar KC, Smith PC, Musick MD, Davis JA, Walter DG, Jackson MA, Guthrie AP, Natan MJ (1996) J Am Chem Soc 118:1148–1153
Brown KR, Natan MJ (1998) Langmuir 14:726–728
Gao MX, Lin XM, Ren B (2008) Chem J Chin Univ Chin 29:959–962
Wang H, Levin CS, Halas NJ (2005) J Am Chem Soc 127:14992–14993
Roberts G (1990) Langmuir Blodgett films. Plenum, New York
Tao AR, Huang JX, Yang PD (2008) Acc Chem Res 41:1662–1673
Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Nano Lett 3:1229–1233
Tao A, Sinsermsuksakul P, Yang P (2007) Nat Nanotechnol 2:435–440
Menon VP, Martin CR (1995) Anal Chem 67:1920–1928
Yao JL, Tang J, Wu DY, Sun DM, Xue KH, Ren B, Mao BW, Tian ZQ (2002) Surf Sci 514:108–116
Zhai XF, Mu C, Xu DS, Tong LM, Zhu T, Du WM (2008) Spectrosc Spectral Anal 28:2329–2332
Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) J Phys Chem C 111:17985–17988
Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL (2006) Adv Mater 18:491–495
Mahajan S, Abdelsalam M, Suguwara Y, Cintra S, Russell A, Baumberg J, Bartlett P (2007) Phys Chem Chem Phys 9:104–109
Haynes CL, Van Duyne RP (2003) J Phys Chem B 107:7426–7433
Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Faraday Discuss 132:9–26
Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Appl Phys Lett 78:802–804
Marquestaut N, Martin A, Talaga D, Servant L, Ravaine S, Reculusa S, Bassani DM, Gillies E, Lagugne-Labarthet F (2008) Langmuir 24:11313–11321
Huebner U, Boucher R, Schneidewind H, Cialla D, Popp J (2008) Microelectron Eng 85:1792–1794
Alvarez-Puebla R, Cui B, Bravo-Vasquez JP, Veres T, Fenniri H (2007) J Phys Chem C 111:6720–6723
Li ZY, Tong WM, Stickle WF, Neiman DL, Williams RS, Hunter LL, Talin AA, Li D, Brueck SRJ (2007) Langmuir 23:5135–5138
Zou SZ, Chen YX, Mao BW, Ren B, Tian ZQ (1997) J Electroanal Chem 424:19–24
Norrod KL, Rowlen KL (1998) Anal Chem 70:4218–4221
Norrod KL, Rowlen KL (1998) J Am Chem Soc 120:2656–2657
Taylor CE, Garvey SD, Pemberton JE (1996) Anal Chem 68:2401–2408
Bewicka A, Thomasa B (1975) J Electroanal Chem 65:911–931
Otto A (1978) Surf Sci 75:L392–L396
Cai ZP, Wang B, He TC, Zhang L, Mo YJ (2007) J Light Scattering 19:124–127
Li MD, Cui Y, Gao MX, Luo J, Ren B, Tian ZQ (2008) Anal Chem 80:5118–5125
Meinhart CD, Wereley ST (2003) Meas Sci Technol 14:1047–1053
Mahoney MR, Cooney RP (1983) J Phys Chem 87:5314–5319
Ramsey J, Ranganathan S, McCreery RL, Zhao J (2001) Appl Spectrosc 55:767–773
Vess TM, Wertz DW (1991) J Electroanal Chem 313:81–94
Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) J Phys Chem C 111:13794–13803
Cai WB, Ren B, Li XQ, She CX, Liu FM, Cai XW, Tian ZQ (1998) Surf Sci 406:9–22
Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:9
McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) J Phys Chem B 109:11279–11285
Hildebrandt P, Stockburger M (1984) J Phys Chem 88:5935–5944
Acknowledgements
This work was supported by the National Basic Research Program of China (973 Program nos. 2009CB930703, 2007CB935603 and 2007DFC40440), the Natural Science Foundation of China (20673086, 20620130427, 20825313, and 20827003), and the Ministry of Education of China (NCET-05-0564).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lin, XM., Cui, Y., Xu, YH. et al. Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394, 1729–1745 (2009). https://doi.org/10.1007/s00216-009-2761-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-009-2761-5