Analytical and Bioanalytical Chemistry

, Volume 394, Issue 2, pp 567–573 | Cite as

Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography

  • Patricia W. Stege
  • Lorena L. Sombra
  • Germán A. Messina
  • Luis D. Martinez
  • María F. Silva
Original Paper


Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 μg L−1 for PNP, 0.20 μg L−1 for PAP, and 0.16 μg L−1 for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina.


Schematic representation of the cloud point extraction process.


Micellar electrokinetic chromatography Cloud point extraction p-nitrophenol p-aminophenol Hydroquinone. 



This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT; PICT-BID), and Universidad Nacional de San Luis (Argentina).


  1. 1.
    Boehncke A, Koennecker G, Mangelsdorf I, Wibbertmann A (2000) Mononitrophenols, concise international chemical assessment document 20.
  2. 2.
    US Environmental Protection Agency (2000) Release and pollution prevention report.Google Scholar
  3. 3.
    Gimeno O, Carbajo M, Beltran FJ et al (2005) J Hazard Mater B 119:99CrossRefGoogle Scholar
  4. 4.
    Ksibi M, Zemzemi A, Boukchina R (2003) J Photochem Photobiol A Chem 159:61CrossRefGoogle Scholar
  5. 5.
    Canizares P, Lobato J, Paz R et al (2005) Water Res 39:2687CrossRefGoogle Scholar
  6. 6.
    Peretti SW, Tompkins CJ, Goodall JL et al (2001) J Membr Sci 195:193CrossRefGoogle Scholar
  7. 7.
    Luan J, Plaisier A (2004) J Membr Sci 229:235CrossRefGoogle Scholar
  8. 8.
    Afzal Khan S, Hamayun M, Ahmed S (2006) Enzyme Microb Tech 38:10CrossRefGoogle Scholar
  9. 9.
    Harmon RC, Kiningham KK, Valentovic MA (2006) Toxicol Appl Pharm 213:179CrossRefGoogle Scholar
  10. 10.
    Devillers J, Boule P, Vasseur P et al (1990) Ecotox Environ Safe 19:327CrossRefGoogle Scholar
  11. 11.
    Ferrera CP, Sanz CM, Santana J et al (2004) Anal Chem 23:469Google Scholar
  12. 12.
    Liu Q, Cai W, Shao X (2008) Talanta 77:679CrossRefGoogle Scholar
  13. 13.
    Gavrilenko MA, Gavrilenko NA et al (2005) Anal Bioanal Chem 61:216Google Scholar
  14. 14.
    Muthuraman G, Teng TT, Leh CP et al (2009) J Hazard Mater 163:363CrossRefGoogle Scholar
  15. 15.
    Toledo M, Lanças FM, Carrilho E (2007) J Brazil Chem Soc 18:1004Google Scholar
  16. 16.
    Rodríguez I, Llompart MP, Cela R (2000) J Chromatogr A 885:291CrossRefGoogle Scholar
  17. 17.
    Eiguren Fernández A, Sosa Ferrera Z, Santana Rodríguez JJ (1999) Analyst 24:487CrossRefGoogle Scholar
  18. 18.
    Calvo Seronero L, Fernández Laespada ME, Pérez Pavón JL et al (2000) J Chromatogr A 897:171CrossRefGoogle Scholar
  19. 19.
    Luconi MO, Olsina RA, Fernández LP et al (2006) J Hazard Mater 128:3240CrossRefGoogle Scholar
  20. 20.
    Silva MF, Cerutti ES, Martinez LD (2006) Microchim Acta 155:349CrossRefGoogle Scholar
  21. 21.
    Carabias-Martínez R, Rodríguez-Gonzalo F, Moreno-Cordero B et al (2000) J Chromatogr A 902:251CrossRefGoogle Scholar
  22. 22.
    Carabias-Martínez R, Rodríguez-Gonzalo E, Domínguez-Álvarez J et al (2003) J Chromatogr A 37:1005Google Scholar
  23. 23.
    Cerutti S, Silva MF, Gasquez JA et al (2005) Electrophoresis 26:3500CrossRefGoogle Scholar
  24. 24.
    WeiWei, Xue-Bo Yin, Xi-Wen He (2008) J Chromatogr A 1202:212CrossRefGoogle Scholar
  25. 25.
    Terabe S, Otsuka K, Ichikawa K et al (1984) Anal Chem 56:111CrossRefGoogle Scholar
  26. 26.
    Palmer J, Munro NJ, Landers JP (1999) Anal Chem 71:1679CrossRefGoogle Scholar
  27. 27.
    Ebber A (2006) Chromatographia 53:307CrossRefGoogle Scholar
  28. 28.
    Niazi A, Yazdanipour A (2007) J Hazard Mat 146:421CrossRefGoogle Scholar
  29. 29.
    Huang X, Qiu N et al (2008) J Chromatogr A 1194:134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Patricia W. Stege
    • 1
  • Lorena L. Sombra
    • 1
  • Germán A. Messina
    • 1
  • Luis D. Martinez
    • 1
  • María F. Silva
    • 2
    • 3
  1. 1.INQUISAL, Department of ChemistryNational University of San Luis, CONICETSan LuisArgentina
  2. 2.Departamento de Biomatemática y Fisicoquímica, Facultad de Ciencias AgrariasUniversidad Nacional de CuyoMendozaArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Buenos AiresArgentina

Personalised recommendations