Skip to main content
Log in

Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, we present progress towards an analytical sensor for polycyclic aromatic hydrocarbons (PAHs) using surface-enhanced Raman scattering (SERS) on partition layer-modified nanostructured substrates. Specifically, a 1-decanethiol monolayer has been assembled on a silver film over nanospheres substrate to concentrate PAHs within the zone of SERS detection. Both anthracene and pyrene were detected with limits of detection at 300 and 700 pM, respectively. The measured SERS spectra allowed for easy distinction of the two PAH compounds, due to varying peak locations, and insight into the partitioning mechanism. Additionally, exposure to a common environmental interferant, Suwannee River fulvic acid, did not impede the measurement of the PAHs, and the sensor is reusable after a short exposure to 1-octanol. Finally, the utility of this sensing platform for PAH detection was compared to that achievable for other classes of organic pollutants such as polychlorinated biphenyls and polybrominated diphenyl ethers.

SERS detection of polycyclic aromatic hydrocarbons facilitated via partition layer modified substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley-Interscience, New York

    Book  Google Scholar 

  2. Braun G, Lee SJ, Dante M, Nguyen T-Q, Moskovits M, Reich N (2007) J Am Chem Soc 129:6378–6379

    Article  CAS  Google Scholar 

  3. Li H, Sun J, Cullum BM (2006) NanoBiotechnology 2:17–28

    Article  CAS  Google Scholar 

  4. Drachev VP, Shalaev VM (2006) Surf Enhanced Raman Scattering: Physics Applications 103:351–366

    Article  CAS  Google Scholar 

  5. Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) J Am Chem Soc 127:4484–4489

    Article  CAS  Google Scholar 

  6. Chu H, Huang Y, Zhao Y (2008) Appl Spectrosc 62:922–931

    Article  CAS  Google Scholar 

  7. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) J Am Chem Soc 125:588–593

    Article  CAS  Google Scholar 

  8. Shah NC, Lyandres O, Walsh JT Jr, Glucksberg MR, Van Duyne RP (2007) Anal Chem 79:6927–6932

    Article  CAS  Google Scholar 

  9. Bantz KC, Haynes CL (2008) Langmuir 24:5862–5867

    Article  CAS  Google Scholar 

  10. Kennedy BJ, Spaeth S, Dickey M, Carron KT (1999) J Phys Chem B 103:3640–3646

    Article  CAS  Google Scholar 

  11. Carron K, Peitersen L, Lewis M (1992) Environ Sci Technol 26:1950–1954

    Article  CAS  Google Scholar 

  12. Mullen K, Carron K (1994) Anal Chem 66:478–483

    Article  CAS  Google Scholar 

  13. Bantz KC, Haynes CL. (2009) Vib Spectrosc doi:10.1016/j.vibspec.2008.07.006

  14. Van Duyne RP, Hulteen JC, Treichel DA (1993) J Chem Phys 99:2101–2115

    Article  Google Scholar 

  15. Aldstadt J, St. Germain R, Grundl T, Schweitzer R (2002) An in situ laser-induced fluorescence system for polycylic aromatic hydrocarbon-contaminated sediments. US EPA Report

  16. Schwartzenbach RP, Gschwend PM, Imboden DM (2003) Environmental Organic Chemistry. Wiley, New Jersey

    Google Scholar 

  17. US EPA (2006) Consumer Factsheet: Benzo(a)pyrene

  18. Hawthorne SB, St Germain RW, Azzolina NA (2008) Environ Sci Technol 42:8021–8026

    Article  CAS  Google Scholar 

  19. US EPA (2007) Method 8272

  20. US EPA (1997) Method 610

  21. US EPA (1990) Method 550

  22. Waters LC, Palausky A, Counts RW, Jenkins RA (1997) Field Anal Chem Technol 1:227–238

    Article  CAS  Google Scholar 

  23. Troisi GM, Borjesson L (2005) Environ Sci Technol 39:3748–3755

    Article  CAS  Google Scholar 

  24. Bryant MA, Pemberton JE (1991) J Am Chem Soc 113:8284–8293

    Article  CAS  Google Scholar 

  25. Donovan SF, Pescatore MC (2002) J Chromatogr A 952:47–61

    Article  CAS  Google Scholar 

  26. Paschke A, Popp P, Schuurmann G (1999) Fresenius J Anal Chem 363:426–428

    Article  CAS  Google Scholar 

  27. Wang XH, Valverde-Aguilar G, Weaver MN, Nelsen SF, Zink JI (2007) J Phys Chem A 111:5441–5447

    Article  CAS  Google Scholar 

  28. Shinohara H, Yamakita Y, Ohno K (1998) J Mol Struct 442:221–234

    Article  CAS  Google Scholar 

  29. Neugebauer J, Baerends EJ, Efremov EV, Ariese F, Gooijer C (2005) J Phys Chem A 109:2100–2106

    Article  CAS  Google Scholar 

  30. Osticioli I, Zoppi A, Castellucci EM (2007) Appl Spectrosc 61:839–844

    Article  CAS  Google Scholar 

  31. Rycenga M, McLellan JM, Xia YN (2008) Chem Phys Lett 463:166–171

    Article  CAS  Google Scholar 

  32. Corsolini S, Borghesi N, Schiamone A, Focardi S (2007) Environ Sci Pollut Res 14:421–429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the McNeill group at the University of Minnesota for the fulvic acid sample and the American Chemical Society Petroleum Research Fund for funding. This work was supported partially by the MRSEC Program of the National Science Foundation under award number DMR-0819885. Vapor deposition was performed at the University of Minnesota Nanofabrication Center, a member of the National Nanotechnology Infrastructure Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy L. Haynes.

Additional information

C. L. Jones and K. C. Bantz contributed equally to this work:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, C.L., Bantz, K.C. & Haynes, C.L. Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 394, 303–311 (2009). https://doi.org/10.1007/s00216-009-2701-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2701-4

Keywords