Measurement of longitudinal sulfur isotopic variations by laser ablation MC-ICP-MS in single human hair strands

Abstract

A new method for the measurement of longitudinal variations of sulfur isotope amount ratios in single hair strands using a laser ablation system coupled to a multicollector inductively coupled plasma mass spectrometer (LA-MC-ICP-MS) is reported here for the first time. Ablation parameters have been optimized for the measurement of sulfur isotope ratios in scalp human hair strands of 80–120-μm thickness and different washing procedures have been evaluated. The repeatability of the method has been tested and the ability to measure sulfur isotopic variations in 1,000-μm-long hair segments has been evaluated. A horse hair sample previously characterized for carbon and nitrogen isotope ratios in an interlaboratory study has been characterized by LA-MC-ICP-MS to be used as an in-house standard for the bracketing of human hair strands. 34S/32S isotope amount ratios have been measured and corrected for instrumental mass bias adopting the external standardization approach using National Institute of Standards and Technology (NIST) RM8553 and full uncertainty budgets have been calculated using the Kragten approach. Results are reported as both 34S/32S isotope amount ratios and δSV-CDT values (sulfur isotopic differences relative to a reference sample expressed in the Vienna Canyon Diablo Troilite (V-CDT) scale) calculated using NIST RM8553, NIST RM8554, and NIST RM8556 to anchor results to the V-CDT scale. The main advantage of the new method versus conventional gas source isotope ratio mass spectrometry measurements is that longitudinal variations in sulfur isotope amount ratios can be resolved. Proof of concept is shown with human scalp hair strands from three individuals, two UK residents and one traveler (long periods of time abroad). The method enables monitoring of longitudinal isotope ratio variations in single hair strands. Absolute ratios are reported and δ34SV-CDT values are plotted for comparison. Slight variations of <1.2‰ were detected in the hair strands from UK residents whereas the traveler presented a variation of >5‰. Thus, the measurement of sulfur isotopic variations in hair samples has potential to be an indicator of geographical origin and recent movements and could be used in combination with isotope ratio measurements in water/foodstuffs from different geographical locations to provide important information in nutritional and geographical studies.

The measurement of longitudinal sulfur isotopic variations by LA-MC-ICP-MS in single human hair strands could play an important role in human identification providing information regarding geographical origin, recent movements and lifestyle of an individual

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Rodushkin I, Axelsson MD (2000) Sci Total Environ 250:83–100

    Article  CAS  Google Scholar 

  2. 2.

    Bermejo-Barrera P, Moreda-Pineiro A, Romero-Barbeito T, Moreda-Pineiro J, Bermejo-Barrera A (1996) Clin Chem 42:1287–1288

    CAS  Google Scholar 

  3. 3.

    Rodushkin I, Axelsson MD (2000) Sci Total Environ 262:21–36

    Article  CAS  Google Scholar 

  4. 4.

    Legrand M, Lam R, Jensen-Fontaine M, Salin ED, Man Chan H (2004) J Anal At Spectrom 19:1287–1288

    Article  CAS  Google Scholar 

  5. 5.

    Karpas Z, Lorber A, Sela H, Paz-Tal O, Hagag Y, Kurttio P, Salonen L (2005) Health Phys 89:315–321

    Article  CAS  Google Scholar 

  6. 6.

    Bol R, Marsh J, Heaton THE (2007) Rapid Commun Mass Spectrom 21:2951–2954

    Article  CAS  Google Scholar 

  7. 7.

    Legrand M, Lam R, Passos CJ, Mergler D, Salin ED, Chan HM (2007) Environ Sci Technol 41:593–598

    Article  CAS  Google Scholar 

  8. 8.

    Macko SA, Engel MH, Andrusevich V, Lubec G, O’Connell TC, Hedges RE (1999) Philos Trans R Soc Lond B Biol Sci 354:65–75

    Article  CAS  Google Scholar 

  9. 9.

    Khalique A, Ahmad S, Anjum T, Jaffar M, Shah MH, Shaheen N, Tariq SR, Manzoor S (2005) Environ Monit Assess 104:45–57

    Article  CAS  Google Scholar 

  10. 10.

    Fraser I, Meier-Augenstein W (2007) Rapid Commun Mass Spectrom 21:3279–3285

    Article  CAS  Google Scholar 

  11. 11.

    Fraser I, Meier-Augenstein W, Kalin RM (2006) Rapid Commun Mass Spectrom 20:1109–1116

    Article  CAS  Google Scholar 

  12. 12.

    Klaus JP (2006) Rapid Commun Mass Spectrom 20:2973–2978

    Article  Google Scholar 

  13. 13.

    O’Connell TC, Hedges REM (2008) Am J Phys Anthropol 108:409–425

    Article  Google Scholar 

  14. 14.

    Petzke KJ, Boeing H, Metges CC (2005) Rapid Commun Mass Spectrom 19:1392–1400

    Article  CAS  Google Scholar 

  15. 15.

    Bol R, Pflieger C (2002) Rapid Commun Mass Spectrom 16:2195–2200

    Article  CAS  Google Scholar 

  16. 16.

    Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE (2008) Proc Natl Acad Sci USA 105:2788–2793

    Article  CAS  Google Scholar 

  17. 17.

    Qi HP, Coplen TB (2003) Chem Geol 199:183–187

    CAS  Google Scholar 

  18. 18.

    Coleman M (2004) Handbook of stable isotope analytical techniques, vol. I. Elsevier, Amsterdam

    Google Scholar 

  19. 19.

    Krouse HR, Coplen TB (1997) Pure Appl Chem 69:293–295

    Article  CAS  Google Scholar 

  20. 20.

    Mason PRD, Kaspers K, van Bergen MJ (1999) J Anal At Spectrom 14:1067–1074

    Article  CAS  Google Scholar 

  21. 21.

    Evans P, Wolff-Briche C, Fairman B (2001) J Anal At Spectrom 16:964–969

    Article  CAS  Google Scholar 

  22. 22.

    Prohaska T, Latkoczy C, Stingeder G (1999) J Anal At Spectrom 14:1501–1504

    Article  CAS  Google Scholar 

  23. 23.

    Nowell G, Pearson D, Ottley C, Schwieters J, Dowall D (2003) In: Holland G, Tanner S (eds) Plasma source mass spectrometry, applications and emerging technologies. Royal Society of Chemistry, London, ISBN:0-85404-603-8

    Google Scholar 

  24. 24.

    Clough R, Evans P, Catterick T, Evans EH (2006) Anal Chem 78:6126–6132

    Article  CAS  Google Scholar 

  25. 25.

    Santamaria-Fernandez R, Hearn R (2008) Rapid Commun Mass Spectrom 22:401–408

    Article  CAS  Google Scholar 

  26. 26.

    Robbins CR (2002) Chemical and physical behavior of human hair. Springer, New York

    Google Scholar 

  27. 27.

    Elish E, Karpas Z, Lorber A (2007) J Anal At Spectrom 22:540–546

    Article  CAS  Google Scholar 

  28. 28.

    Stadlbauer C, Reiter C, Patzak B, Stingeder G, Prohaska T (2007) Anal Bioanal Chem 388:593–602

    Article  CAS  Google Scholar 

  29. 29.

    Stadlbauer C, Prohaska T, Reiter C, Knaus A, Stingeder G (2005) Anal Bioanal Chem 383:500–508

    Article  CAS  Google Scholar 

  30. 30.

    Sela H, Karpas Z, Zoiry M, Pickhardt C, Becker SJ (2007) Int J Mass Spectrom 261:199–207

    Article  CAS  Google Scholar 

  31. 31.

    FIRMS newsletter (2006) volume 4 issue 1. http://www.forensic-isotopes.rdg.ac.uk/

  32. 32.

    Weyer S, Schwieters J (2003) Int J Mass Spectrom 226:355–368

    Article  CAS  Google Scholar 

  33. 33.

    Prohaska T, Latkoczy C, Stingeder G (1999) J Anal At Spectrom 14:1501–1504

    Article  CAS  Google Scholar 

  34. 34.

    Mason PRD, Kaspers K, van Bergen MJ (1999) J Anal At Spectrom 14:1067–1074

    Article  CAS  Google Scholar 

  35. 35.

    Evans P, Wolff-Briche C, Fairman B (2001) J Anal At Spectrom 16:964–969

    Article  CAS  Google Scholar 

  36. 36.

    Santamaria-Fernandez R, Hearn R, Wolff JC (2008) J Anal At Spectrom 23:1294–1299

    Article  CAS  Google Scholar 

  37. 37.

    Ingle CP, Sharp BL, Horstwood MSA, Parrish RR, Lewis DJ (2003) J Anal At Spectrom 18:219–229

    Article  CAS  Google Scholar 

  38. 38.

    Günther D, Heinrich CA (1999) J Anal At Spectrom 14:1363–1368

    Article  Google Scholar 

  39. 39.

    Allen LA, Leach JJ, Houk RS (1997) Anal Chem 69:2384–2391

    Article  CAS  Google Scholar 

  40. 40.

    Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) J Anal At Spectrom 13:1001–1008

    Article  CAS  Google Scholar 

  41. 41.

    ISO (1995) Guide to the expression of uncertainty in measurement. International Organisation For Standardisation (ISO), Geneva

    Google Scholar 

  42. 42.

    Kragten J (1994) Analyst 119:2161–2165

    Article  CAS  Google Scholar 

  43. 43.

    Ding T, Valkiers S, Kipphardt H, De Bievre P, Taylor PDP, Gonfiantini R, Krouse R (2001) Geochim Cosmochim Acta 65:2433–2437

    Article  CAS  Google Scholar 

  44. 44.

    Giner Martinez-Sierra J, Moreno Sanz F, Herrero Espilez P, Marchante Gayon JM, Garcia Alonso JI (2007) J Anal At Spectrom 22:1105–1112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the UK Department for Innovation, Universities, and Skills as part of the National Measurement System Chemical and Biological Metrology Knowledge Base Program. The authors would like to thank the FIRMS network (http://www.forensic-isotopes.rdg.ac.uk/) for providing horse hair sample and particularly Wolfram Meier-Augenstein for helpful discussions. The authors are grateful for support from the Education and Science Council of the Principado de Asturias (grant BP07-059) towards Justo Giner Martinez-Sierra’s secondment at LGC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rebeca Santamaria-Fernandez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santamaria-Fernandez, R., Giner Martínez-Sierra, J., Marchante-Gayón, J.M. et al. Measurement of longitudinal sulfur isotopic variations by laser ablation MC-ICP-MS in single human hair strands. Anal Bioanal Chem 394, 225–233 (2009). https://doi.org/10.1007/s00216-009-2615-1

Download citation

Keywords

  • Mass spectrometry/ICP-MS
  • Laser ablation
  • Forensics
  • Sulfur
  • Isotope ratio
  • MC-ICP-MS