Critical evaluation of novel dynamic flow-through methods for automatic sequential BCR extraction of trace metals in fly ash


Two novel dynamic extraction approaches, the so-called sequential injection microcolumn extraction and sequential injection stirred-flow chamber extraction, based on the implementation of a sample-containing container as an external extraction reactor in a sequential injection network, are for the first time, optimized and critically appraised for fractionation assays. The three steps of the original Community Bureau of Reference (BCR) sequential extraction scheme have been performed in both automated dynamic fractionation systems to evaluate the extractability of Cr, Cu, Ni, Pb, and Zn in a standard reference material of coal fly ash (NIST 1633b). In order to find the experimental conditions with the greatest influence on metal leachability in dynamic BCR fractionation, a full-factorial design was applied, in which the solid sample weight (100–500 mg) and the extraction flow rate (3.0–6.0 mL min−1) were selected as experimental factors. Identical cumulative extractabilities were found in both sequential injection (SI)-based methods for most of assayed trace elements regardless of the extraction conditions selected, revealing that both dynamic fractionation systems, as opposed to conventional steady-state BCR extraction, are not operationally defined within the selected range of experimental conditions. Besides, the proposed automated SI assemblies offer a significant saving of operational time with respect to classical BCR test, that is, 3.3 h versus 48 h, for complete fractionation with minimum analyst involvement.

Schematic illustration of automatic flow-based setups for dynamic fractionation of trace metals in fly ash

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Ure AM, Davidson CM (2002) Chemical speciation in the environment, 2nd Ed. Blackwell Science, Oxford, UK

    Google Scholar 

  2. 2.

    Filgueiras AV, Lavilla I, Bendicho C (2002) J Environ Monit 4:823–857

    Article  CAS  Google Scholar 

  3. 3.

    Quevauviller Ph (2002) Methodologies for soil and sediment fractionation studies. Royal Society of Chemistry, Cambridge, UK

    Book  Google Scholar 

  4. 4.

    Templeton DM, Ariese F, Cornelis R, Danielson L-G, Muntau H, van Leeuwen HP, Lobinski R (2000) Pure Appl Chem 72:1453–1470

    Article  CAS  Google Scholar 

  5. 5.

    Bacon JR, Davidson CM (2008) Analyst 133:25–46

    Article  CAS  Google Scholar 

  6. 6.

    Fedotov PS, Miró M (2007) Fractionation and mobility of trace elements in soils and sediments. In: Huang PM, Gadd GM, Violante A (eds) Biophysico-chemical processes of heavy metal and metalloids in soil environments, chapter 12. Wiley, New York, pp 467–520

    Chapter  Google Scholar 

  7. 7.

    Chen Y-X, Hua Y-M, Zhang S-H, Tian G-M (2004) J Hazard Mater 123:196–202

    Article  CAS  Google Scholar 

  8. 8.

    Lin C-F, Wu C-H, Liu Y-C (2007) Waste Manage 27:954–960

    Article  CAS  Google Scholar 

  9. 9.

    Huang S-J, Chang C-Y, Mui D-T, Chang F-C, Lee M-Y, Wang C-F (2007) J Hazard Mater 149:180–189

    Article  CAS  Google Scholar 

  10. 10.

    Soco E, Kalembkiewicz J (2007) J Hazard Mater 145:482–487

    Article  CAS  Google Scholar 

  11. 11.

    Ure AM, Quevauviller Ph, Muntau H, Griepink B (1993) Int J Environ Anal Chem 51:135–139

    Article  CAS  Google Scholar 

  12. 12.

    Quevauviller Ph, Rauret G, Muntau H, Ure AM, Rubio R, López-Sánchez JF, Fiedler HD, Griepink B (1994) Fresenius’ J Anal Chem 349:808–814

    Article  CAS  Google Scholar 

  13. 13.

    Gómez D, Dos Santos M, Fujiwara F, Polla G, Marrero J, Dawidowski L, Smichowski P (2007) Microchem J 85:276–284

    Article  CAS  Google Scholar 

  14. 14.

    Jegadeesan G, Al-Abed SR, Pinto P (2008) Fuel 87:1887–1893

    Article  CAS  Google Scholar 

  15. 15.

    Derie R (1996) Waste Manege 16:711–716

    Article  CAS  Google Scholar 

  16. 16.

    Miró M, Hansen EH, Chomchoei R, Frenzel W (2005) Trends Anal Chem 24:759–771

    Article  CAS  Google Scholar 

  17. 17.

    Miró M, Hansen EH (2006) Microchim Acta 154:3–13

    Article  CAS  Google Scholar 

  18. 18.

    Shiowatana J, Tantidanai N, Nookabkaew S, Nacapricha D (2001) J Environ Qual 30:1195–1205

    CAS  Google Scholar 

  19. 19.

    Fedotov S, Zavarzina AG, Spivakov BY, Wennrich R, Mattusch J, Titze K de PC, Demin VV (2002) J Environ Monit 4:318–324

    Article  CAS  Google Scholar 

  20. 20.

    Jimoh M, Frenzel W, Müller V, Stephanowitz H, Hoffmann E (2004) Anal Chem 76:1197–1203

    Article  CAS  Google Scholar 

  21. 21.

    Silva M, Kyser K, Beauchemin D (2007) Anal Chim Acta 584:447–454

    Article  CAS  Google Scholar 

  22. 22.

    Beauchemin D, Kyser K, Chipley D (2002) Anal Chem 74:3924–3928

    Article  CAS  Google Scholar 

  23. 23.

    Beeston MP, Glass HJ, van Elteren JT, Slejkovec Z (2007) Anal Chim Acta 599:264–270

    Article  CAS  Google Scholar 

  24. 24.

    Chomchoei R, Hansen EH, Shiowatana J (2004) Anal Chim Acta 526:177–184

    Article  CAS  Google Scholar 

  25. 25.

    Buanuam J, Tiptanasup K, Shiowatana J, Miró M, Hansen EH (2006) J Environ Monit 8:1248–1254

    Article  CAS  Google Scholar 

  26. 26.

    Rosende M, Miró M, Cerdà V (2008) Anal Chim Acta 619:192–201

    Article  CAS  Google Scholar 

  27. 27.

    Shiowatana J, Tantidanai N, Nookabkaew S, Nacapricha D (2001) Environ Int 26:381–387

    Article  CAS  Google Scholar 

  28. 28.

    Chomchoei R, Miró M, Hansen EH, Shiowatana J (2005) Anal Chem 77:2720–2726

    Article  CAS  Google Scholar 

  29. 29.

    Long X-B, Miró M, Hansen EH (2006) Analyst 131:132–140

    Article  CAS  Google Scholar 

  30. 30.

    Chomchoei R, Miró M, Hansen EH, Shiowatana J (2005) Anal Chim Acta 536:183–190

    Article  CAS  Google Scholar 

  31. 31.

    Boonjob W, Miró M, Cerdà V (2008) Anal Chem 80:7319–7326

    Article  CAS  Google Scholar 

  32. 32.

    Lenehan CE, Barnett NW, Lewis SW (2002) Analyst 125:997–1020

    Article  CAS  Google Scholar 

  33. 33.

    Becerra E, Cladera A, Cerdà V (1999) Lab Rob Autom 11:131–140

    Article  CAS  Google Scholar 

  34. 34.

    MLS-1200 MEGA Milestone Microwave System with MDR technology. Milestone Cookbook of Microwave Application Notes; Report code 177: Fly ash from Cement Plan, 1995

  35. 35.

    González AG (1998) Anal Chim Acta 360:227–241

    Article  Google Scholar 

  36. 36.

    Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: part A. Elsevier, Amsterdam, pp 659–682 chapter 22

    Google Scholar 

  37. 37.

    Brereton RG (2007) Applied chemometrics for scientists. Wiley, Chichester, pp 25–32 chapter 2

    Book  Google Scholar 

  38. 38.

    Sukreeyapongse O, Holm PE, Strobel BW, Panichsakpatana S, Magid J, Hansen HCB (2002) J Environ Qual 31:1901–1909

    CAS  Article  Google Scholar 

  39. 39.

    Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Geochim. Cosmochim Acta 65:1233–1242

    Article  CAS  Google Scholar 

  40. 40.

    Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Pearson Education, UK (Chapter 7)

    Google Scholar 

  41. 41.

    Ciceri E, Giussani B, Pozzi A, Dossi C, Recchia S (2008) Talanta 76:621–626

    Article  CAS  Google Scholar 

  42. 42.

    Van der Bruggen B, Vogel G, Van Herck P, Vandecasteele C (1998) J Hazard Mater 57:127–144

    Article  Google Scholar 

  43. 43.

    Sahuquillo A, Rigol A, Rauret G (2002) J Environ Monit 4:1003–1009

    Article  CAS  Google Scholar 

  44. 44.

    Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: part A. Elsevier, Amsterdam, pp 93–97 chapter 5

    Google Scholar 

  45. 45.

    Raksasataya M, Langdon AG, Kim ND (1997) Anal Chim Acta 347:313–323

    Article  CAS  Google Scholar 

  46. 46.

    Cappuyns V, Swennen R (2008) Talanta 75:1338–1347

    Article  CAS  Google Scholar 

  47. 47.

    Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V (2003) Environmental Pollution 122:323–342

    Article  Google Scholar 

  48. 48.

    Agniezka S, Zyrnicki W (2002) Microchem J 72:9–16

    Article  Google Scholar 

  49. 49.

    Smichowski P, Polla G, Gómez D, Fernández-Espinosa AJ, Calleja-López A (2008) Fuel 87:1249–1258

    Article  CAS  Google Scholar 

Download references


Warunya Boonjob and María Rosende thanks the Conselleria d’Economia, Hisenda i Innovació from the Government of the Balearic Islands (CAIB) for allocation of PhD stipends. The authors are grateful to the Ministerio de Ciencia y Tecnología (Spain) and the Conselleria d’Economia, Hisenda i Innovació from CAIB for financial support through projects CTQ 2007-64331 and PROGECIB-1A, respectively. The authors extend their appreciation to Prof. Juwadee Shiowatana for provision of the stirred-flow chamber.

Author information



Corresponding author

Correspondence to Manuel Miró.

Additional information

Warunya Boonjob and María Rosende have equally contributed to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boonjob, W., Rosende, M., Miró, M. et al. Critical evaluation of novel dynamic flow-through methods for automatic sequential BCR extraction of trace metals in fly ash. Anal Bioanal Chem 394, 337–349 (2009).

Download citation


  • Dynamic fractionation
  • Sequential injection analysis
  • Stirred-flow chamber extraction
  • Microcolumn extraction
  • Coal fly ash
  • Trace elements