Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 1, pp 337–349 | Cite as

Critical evaluation of novel dynamic flow-through methods for automatic sequential BCR extraction of trace metals in fly ash

  • Warunya Boonjob
  • María Rosende
  • Manuel MiróEmail author
  • Víctor Cerdà
Original Paper

Abstract

Two novel dynamic extraction approaches, the so-called sequential injection microcolumn extraction and sequential injection stirred-flow chamber extraction, based on the implementation of a sample-containing container as an external extraction reactor in a sequential injection network, are for the first time, optimized and critically appraised for fractionation assays. The three steps of the original Community Bureau of Reference (BCR) sequential extraction scheme have been performed in both automated dynamic fractionation systems to evaluate the extractability of Cr, Cu, Ni, Pb, and Zn in a standard reference material of coal fly ash (NIST 1633b). In order to find the experimental conditions with the greatest influence on metal leachability in dynamic BCR fractionation, a full-factorial design was applied, in which the solid sample weight (100–500 mg) and the extraction flow rate (3.0–6.0 mL min−1) were selected as experimental factors. Identical cumulative extractabilities were found in both sequential injection (SI)-based methods for most of assayed trace elements regardless of the extraction conditions selected, revealing that both dynamic fractionation systems, as opposed to conventional steady-state BCR extraction, are not operationally defined within the selected range of experimental conditions. Besides, the proposed automated SI assemblies offer a significant saving of operational time with respect to classical BCR test, that is, 3.3 h versus 48 h, for complete fractionation with minimum analyst involvement.

Schematic illustration of automatic flow-based setups for dynamic fractionation of trace metals in fly ash

Keywords

Dynamic fractionation Sequential injection analysis Stirred-flow chamber extraction Microcolumn extraction Coal fly ash Trace elements 

Notes

Acknowledgments

Warunya Boonjob and María Rosende thanks the Conselleria d’Economia, Hisenda i Innovació from the Government of the Balearic Islands (CAIB) for allocation of PhD stipends. The authors are grateful to the Ministerio de Ciencia y Tecnología (Spain) and the Conselleria d’Economia, Hisenda i Innovació from CAIB for financial support through projects CTQ 2007-64331 and PROGECIB-1A, respectively. The authors extend their appreciation to Prof. Juwadee Shiowatana for provision of the stirred-flow chamber.

References

  1. 1.
    Ure AM, Davidson CM (2002) Chemical speciation in the environment, 2nd Ed. Blackwell Science, Oxford, UKGoogle Scholar
  2. 2.
    Filgueiras AV, Lavilla I, Bendicho C (2002) J Environ Monit 4:823–857CrossRefGoogle Scholar
  3. 3.
    Quevauviller Ph (2002) Methodologies for soil and sediment fractionation studies. Royal Society of Chemistry, Cambridge, UKCrossRefGoogle Scholar
  4. 4.
    Templeton DM, Ariese F, Cornelis R, Danielson L-G, Muntau H, van Leeuwen HP, Lobinski R (2000) Pure Appl Chem 72:1453–1470CrossRefGoogle Scholar
  5. 5.
    Bacon JR, Davidson CM (2008) Analyst 133:25–46CrossRefGoogle Scholar
  6. 6.
    Fedotov PS, Miró M (2007) Fractionation and mobility of trace elements in soils and sediments. In: Huang PM, Gadd GM, Violante A (eds) Biophysico-chemical processes of heavy metal and metalloids in soil environments, chapter 12. Wiley, New York, pp 467–520CrossRefGoogle Scholar
  7. 7.
    Chen Y-X, Hua Y-M, Zhang S-H, Tian G-M (2004) J Hazard Mater 123:196–202CrossRefGoogle Scholar
  8. 8.
    Lin C-F, Wu C-H, Liu Y-C (2007) Waste Manage 27:954–960CrossRefGoogle Scholar
  9. 9.
    Huang S-J, Chang C-Y, Mui D-T, Chang F-C, Lee M-Y, Wang C-F (2007) J Hazard Mater 149:180–189CrossRefGoogle Scholar
  10. 10.
    Soco E, Kalembkiewicz J (2007) J Hazard Mater 145:482–487CrossRefGoogle Scholar
  11. 11.
    Ure AM, Quevauviller Ph, Muntau H, Griepink B (1993) Int J Environ Anal Chem 51:135–139CrossRefGoogle Scholar
  12. 12.
    Quevauviller Ph, Rauret G, Muntau H, Ure AM, Rubio R, López-Sánchez JF, Fiedler HD, Griepink B (1994) Fresenius’ J Anal Chem 349:808–814CrossRefGoogle Scholar
  13. 13.
    Gómez D, Dos Santos M, Fujiwara F, Polla G, Marrero J, Dawidowski L, Smichowski P (2007) Microchem J 85:276–284CrossRefGoogle Scholar
  14. 14.
    Jegadeesan G, Al-Abed SR, Pinto P (2008) Fuel 87:1887–1893CrossRefGoogle Scholar
  15. 15.
    Derie R (1996) Waste Manege 16:711–716CrossRefGoogle Scholar
  16. 16.
    Miró M, Hansen EH, Chomchoei R, Frenzel W (2005) Trends Anal Chem 24:759–771CrossRefGoogle Scholar
  17. 17.
    Miró M, Hansen EH (2006) Microchim Acta 154:3–13CrossRefGoogle Scholar
  18. 18.
    Shiowatana J, Tantidanai N, Nookabkaew S, Nacapricha D (2001) J Environ Qual 30:1195–1205Google Scholar
  19. 19.
    Fedotov S, Zavarzina AG, Spivakov BY, Wennrich R, Mattusch J, Titze K de PC, Demin VV (2002) J Environ Monit 4:318–324CrossRefGoogle Scholar
  20. 20.
    Jimoh M, Frenzel W, Müller V, Stephanowitz H, Hoffmann E (2004) Anal Chem 76:1197–1203CrossRefGoogle Scholar
  21. 21.
    Silva M, Kyser K, Beauchemin D (2007) Anal Chim Acta 584:447–454CrossRefGoogle Scholar
  22. 22.
    Beauchemin D, Kyser K, Chipley D (2002) Anal Chem 74:3924–3928CrossRefGoogle Scholar
  23. 23.
    Beeston MP, Glass HJ, van Elteren JT, Slejkovec Z (2007) Anal Chim Acta 599:264–270CrossRefGoogle Scholar
  24. 24.
    Chomchoei R, Hansen EH, Shiowatana J (2004) Anal Chim Acta 526:177–184CrossRefGoogle Scholar
  25. 25.
    Buanuam J, Tiptanasup K, Shiowatana J, Miró M, Hansen EH (2006) J Environ Monit 8:1248–1254CrossRefGoogle Scholar
  26. 26.
    Rosende M, Miró M, Cerdà V (2008) Anal Chim Acta 619:192–201CrossRefGoogle Scholar
  27. 27.
    Shiowatana J, Tantidanai N, Nookabkaew S, Nacapricha D (2001) Environ Int 26:381–387CrossRefGoogle Scholar
  28. 28.
    Chomchoei R, Miró M, Hansen EH, Shiowatana J (2005) Anal Chem 77:2720–2726CrossRefGoogle Scholar
  29. 29.
    Long X-B, Miró M, Hansen EH (2006) Analyst 131:132–140CrossRefGoogle Scholar
  30. 30.
    Chomchoei R, Miró M, Hansen EH, Shiowatana J (2005) Anal Chim Acta 536:183–190CrossRefGoogle Scholar
  31. 31.
    Boonjob W, Miró M, Cerdà V (2008) Anal Chem 80:7319–7326CrossRefGoogle Scholar
  32. 32.
    Lenehan CE, Barnett NW, Lewis SW (2002) Analyst 125:997–1020CrossRefGoogle Scholar
  33. 33.
    Becerra E, Cladera A, Cerdà V (1999) Lab Rob Autom 11:131–140CrossRefGoogle Scholar
  34. 34.
    MLS-1200 MEGA Milestone Microwave System with MDR technology. Milestone Cookbook of Microwave Application Notes; Report code 177: Fly ash from Cement Plan, 1995Google Scholar
  35. 35.
    González AG (1998) Anal Chim Acta 360:227–241CrossRefGoogle Scholar
  36. 36.
    Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: part A. Elsevier, Amsterdam, pp 659–682 chapter 22Google Scholar
  37. 37.
    Brereton RG (2007) Applied chemometrics for scientists. Wiley, Chichester, pp 25–32 chapter 2CrossRefGoogle Scholar
  38. 38.
    Sukreeyapongse O, Holm PE, Strobel BW, Panichsakpatana S, Magid J, Hansen HCB (2002) J Environ Qual 31:1901–1909CrossRefGoogle Scholar
  39. 39.
    Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Geochim. Cosmochim Acta 65:1233–1242CrossRefGoogle Scholar
  40. 40.
    Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Pearson Education, UK (Chapter 7)Google Scholar
  41. 41.
    Ciceri E, Giussani B, Pozzi A, Dossi C, Recchia S (2008) Talanta 76:621–626CrossRefGoogle Scholar
  42. 42.
    Van der Bruggen B, Vogel G, Van Herck P, Vandecasteele C (1998) J Hazard Mater 57:127–144CrossRefGoogle Scholar
  43. 43.
    Sahuquillo A, Rigol A, Rauret G (2002) J Environ Monit 4:1003–1009CrossRefGoogle Scholar
  44. 44.
    Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: part A. Elsevier, Amsterdam, pp 93–97 chapter 5Google Scholar
  45. 45.
    Raksasataya M, Langdon AG, Kim ND (1997) Anal Chim Acta 347:313–323CrossRefGoogle Scholar
  46. 46.
    Cappuyns V, Swennen R (2008) Talanta 75:1338–1347CrossRefGoogle Scholar
  47. 47.
    Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V (2003) Environmental Pollution 122:323–342CrossRefGoogle Scholar
  48. 48.
    Agniezka S, Zyrnicki W (2002) Microchem J 72:9–16CrossRefGoogle Scholar
  49. 49.
    Smichowski P, Polla G, Gómez D, Fernández-Espinosa AJ, Calleja-López A (2008) Fuel 87:1249–1258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Warunya Boonjob
    • 1
  • María Rosende
    • 1
  • Manuel Miró
    • 1
    Email author
  • Víctor Cerdà
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of the Balearic IslandsPalma de MallorcaSpain

Personalised recommendations