Skip to main content
Log in

Label-free detection of the aptamer binding on protein patterns using Kelvin probe force microscopy (KPFM)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Anti-lysozyme aptamers are found to preferentially bind to the edge of a tightly packed lysozyme pattern. Such edge-binding is due to the better accessibility and flexibility of the edge lysozyme molecules. Kelvin probe force microscopy (KPFM) was used to study the aptamer–lysozyme binding. Our results show that KPFM is capable of detecting the aptamer–protein binding down to the 30 nm scale. The surface potential of the aptamer–lysozyme complex is approximately 12 mV lower than that of the lysozyme. The surface potential images of the aptamer-bound lysozyme patterns have the characteristic shoulder steps around the pattern edge, which is much wider than that of a clean lysozyme pattern. These results demonstrate the potentials of KPFM as a label-free method for the detection of protein–DNA interactions.

Aptamers preferentially bind on the edge of a protein pattern as revealed by Kelvin force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ramsay G (1998) Nat Biotechnol 16:40–44

    Article  CAS  Google Scholar 

  2. Cahill DJ (2001) J Immunol Methods 250:81–91

    Article  CAS  Google Scholar 

  3. Zhu H, Snyder M (2003) Curr Opin Chem Biol 7:55–63

    Article  CAS  Google Scholar 

  4. Blawas AS, Reichert WM (1998) Biomaterials 19:595–609

    Article  CAS  Google Scholar 

  5. Bergveld P (1996) Sens Actuators A-Phys 56:65–73

    Article  Google Scholar 

  6. Sinensky AK, Belcher AM (2007) Nat Nanotechnol 2:653–659

    Article  CAS  Google Scholar 

  7. Laoudj D, Guasch C, Renault E, Bennes R, Bonnet J (2005) Anal Bioanal Chem 381:1476–1479

    Article  CAS  Google Scholar 

  8. Palermo V, Palma M, Samori P (2006) Adv Mater 18:145–164

    Article  CAS  Google Scholar 

  9. Thompson M, Cheran LE, Zhang MQ, Chacko M, Huo H, Sadeghi S (2005) Biosens Bioelectron 20:1471–1481

    Article  CAS  Google Scholar 

  10. Cheran LE, Sadeghi S, Thompson M (2005) Analyst 130:1569–1576

    Article  CAS  Google Scholar 

  11. Hansen DC, Hansen KM, Ferrell TL, Thundat T (2003) Langmuir 19:7514–7520

    Article  CAS  Google Scholar 

  12. Gao P, Cai YG (2008) Langmuir 24:10334–10339

    Article  CAS  Google Scholar 

  13. Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, McDevitt JT, Ellington AD (2004) Anal Chem 76:4066–4075

    Article  CAS  Google Scholar 

  14. White RJ, Phares N, Lubin AA, Xiao Y, Plaxco KW (2008) Langmuir 24:10513–10518

    Article  CAS  Google Scholar 

  15. Kawde AN, Rodriguez MC, Lee TMH, Wang J (2005) Electrochem Commun 7:537–540

    Article  CAS  Google Scholar 

  16. Cheng AKH, Ge B, Yu HZ (2007) Anal Chem 79:5158–5164

    Article  CAS  Google Scholar 

  17. Rodriguez MC, Kawde AN, Wang J (2005) Chem Commun 4267–4269

  18. Tombelli S, Minunni A, Mascini A (2005) Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  19. Hamula CLA, Guthrie JW, Zhang HQ, Li XF, Le XC (2006) Trends Anal Chem 25:681–691

    Article  CAS  Google Scholar 

  20. Mairal T, Ozalp VC, Sanchez PL, Mir M, Katakis I, O’Sullivan CK (2008) Anal Bioanal Chem 390:989–1007

    Article  CAS  Google Scholar 

  21. Navani NK, Li YF (2006) Curr Opin Chem Biol 10:272–281

    Article  CAS  Google Scholar 

  22. Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418

    Article  CAS  Google Scholar 

  23. Nutiu R, Li YF (2003) J Am Chem Soc 125:4771–4778

    Article  CAS  Google Scholar 

  24. Liss M, Petersen B, Wolf H, Prohaska E (2002) Anal Chem 74:4488–4495

    Article  CAS  Google Scholar 

  25. Nutiu R, Li YF (2004) Chem-Eur J 10:1868–1876

    Article  CAS  Google Scholar 

  26. Wang JL, Zhou HS (2008) Anal Chem 80:7174–7178

    Article  CAS  Google Scholar 

  27. Maoz R, Frydman E, Cohen SR, Sagiv J (2000) Adv Mater 12:725

    Article  CAS  Google Scholar 

  28. Maoz R, Cohen SR, Sagiv J (1999) Adv Mater 11:55–61

    Article  CAS  Google Scholar 

  29. Cai YG (2008) Langmuir 24:337–343

    Article  CAS  Google Scholar 

  30. Maoz R, Sagiv J, Degenhardt D, Miihwald H, Quint P (1995) Supramol Sci 2:9

    Article  CAS  Google Scholar 

  31. Wasserman SR, Whitesides GM, Tidswell IM, Ocko BM, Pershan PS, Axe JD (1989) J Am Chem Soc 111:5852–5861

    Article  CAS  Google Scholar 

  32. Koehler JA, Ulbricht M, Belfort G (1997) Langmuir 13:4162–4171

    Article  CAS  Google Scholar 

  33. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  34. Kim DT, Blanch HW, Radke CJ (2002) Langmuir 18:5841–5850

    Article  CAS  Google Scholar 

  35. Balint Z, Nagy K, Laczko I, Bottka S, Vegh GA, Szegletes Z, Varo G (2007) J Phys Chem C 111:17032–17037

    Article  CAS  Google Scholar 

  36. Jacobs HO, Leuchtmann P, Homan OJ, Stemmer A (1998) J Appl Phys 84:1168–1173

    Article  CAS  Google Scholar 

  37. Saito N, Hayashi K, Sugimura H, Takai O, Nakagiri N (2002) Surf Interface Anal 34:601–605

    Article  CAS  Google Scholar 

  38. Jacobs HO, Knapp HF, Stemmer A (1999) Rev Sci Instrum 70:1756–1760

    Article  CAS  Google Scholar 

  39. Yazdanpanah MM, Harfenist SA, Safir A, Cohn RW (2005) J Appl Phys 98:073510

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the University of Kentucky faculty start-up grant. We thank Dr. Mehdi M. Yazdanpanah and Dr. Robert W. Cohn from ElectroOptics Research Institute and Nanotechnology Center, University of Louisville for providing us the Ag2Ga needle tip for high-resolution KPFM characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, P., Cai, Y. Label-free detection of the aptamer binding on protein patterns using Kelvin probe force microscopy (KPFM). Anal Bioanal Chem 394, 207–214 (2009). https://doi.org/10.1007/s00216-008-2577-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2577-8

Keywords