Analytical and Bioanalytical Chemistry

, Volume 394, Issue 2, pp 447–456 | Cite as

Redox cycling in nanofluidic channels using interdigitated electrodes

  • Edgar D. Goluch
  • Bernhard Wolfrum
  • Pradyumna S. Singh
  • Marcel A. G. Zevenbergen
  • Serge G. LemayEmail author
Original Paper


Amperometric detection is ideally suited for integration into micro- and nanofluidic systems as it directly yields an electrical signal and does not necessitate optical components. However, the range of systems to which it can be applied is constrained by the limited sensitivity and specificity of the method. These limitations can be partially alleviated through the use of redox cycling, in which multiple electrodes are employed to repeatedly reduce and oxidize analyte molecules and thereby amplify the detected signal. We have developed an interdigitated electrode device that is encased in a nanofluidic channel to provide a hundred-fold amplification of the amperometric signal from paracetamol. Due to the nanochannel design, the sensor is resistant to interference from molecules undergoing irreversible redox reactions. We demonstrate this selectivity by detecting paracetamol in the presence of excess ascorbic acid.


Nanotechnology Nanofluidic Electrochemistry Amperometric detection Redox cycling Interdigitated electrodes (IDEs) Paracetamol Ascorbic acid Sensor 



This work was funded by the NanoNed and NWO. Edgar Goluch would like to thank the U.S. National Science Foundation for support through IRFP Grant Number 0754396. Bernhard Wolfrum was funded by the DFG. We acknowledge Cees Dekker for general support and helpful discussions.


  1. 1.
    Chen ZL, Hayashi K, Iwasaki Y, Kurita R, Niwa O, Sunaawa K (2005) Electroanal 17:231–238CrossRefGoogle Scholar
  2. 2.
    Lisdat F, Wollenberger U, Makower A, Hortnagl H, Pfeiffer D, Scheller FW (1997) Biosens Bioelectron 12:1199–1211CrossRefGoogle Scholar
  3. 3.
    Ciszewski A, Milczarek G (1999) Anal Chem 71:1055–1061CrossRefGoogle Scholar
  4. 4.
    Malem F, Mandler D (1993) Anal Chem 65:37–41CrossRefGoogle Scholar
  5. 5.
    Raoof JB, Ojani R, Rashid-Nadimi S (2005) Electrochim Acta 50:4694–4698CrossRefGoogle Scholar
  6. 6.
    Selvaraju T, Ramaraj R (2003) Electrochem Commun 5:667–672CrossRefGoogle Scholar
  7. 7.
    Cvacka J, Quaiserova V, Park J, Show Y, Muck A, Swain GM (2003) Anal Chem 75:2678–2687CrossRefGoogle Scholar
  8. 8.
    Martin RS, Gawron AJ, Lunte SM, Henry CS (2000) Anal Chem 72:3196–3202CrossRefGoogle Scholar
  9. 9.
    Shin DC, Sarada BV, Tryk DA, Fujishima A (2003) Anal Chem 75:530–534CrossRefGoogle Scholar
  10. 10.
    Abgrall P, Nguyen NT (2008) Anal Chem 80:2326–2341CrossRefGoogle Scholar
  11. 11.
    Massari AM, Gurney RW, Schwartz CP, Nguyen ST, Hupp JT (2004) Langmuir 20:4422–4429CrossRefGoogle Scholar
  12. 12.
    Krapf D, Quinn BM, Wu MY, Zandbergen HW, Dekker C, Lemay SG (2006) Nano Lett 6:2531–2535CrossRefGoogle Scholar
  13. 13.
    Schoch RB, Cheow LF, Han J (2007) Nano Lett 7:3895–3900CrossRefGoogle Scholar
  14. 14.
    Garcia AL, Ista LK, Petsev DN, O'Brien MJ, Bisong P, Mammoli AA, Brueck SRJ, Lopez GP (2005) Lab Chip 5:1271–1276CrossRefGoogle Scholar
  15. 15.
    White RJ, White HS (2008) Langmuir 24:2850–2855CrossRefGoogle Scholar
  16. 16.
    Sun P, Mirkin MV (2008) J Am Chem Soc 130:8241–8250CrossRefGoogle Scholar
  17. 17.
    Georganopoulou DG, Mirkin MV, Murray RW (2004) Nano Lett 4:1763–1767CrossRefGoogle Scholar
  18. 18.
    Fan FRF, Bard AJ (1995) Science 267:871–874CrossRefGoogle Scholar
  19. 19.
    Brown FO, Lowry JP (2003) Analyst 128:700–705CrossRefGoogle Scholar
  20. 20.
    Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) Nature 286:902–904CrossRefGoogle Scholar
  21. 21.
    Heien M, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, Wightman RM (2005) Proc Natl Acad Sci U S A 102:10023–10028CrossRefGoogle Scholar
  22. 22.
    Rice ME, Oke AF, Bradberry CW, Adams RN (1985) Brain Res 340:151–155CrossRefGoogle Scholar
  23. 23.
    Stamford JA (1985) Brain Res Rev 10:119–135CrossRefGoogle Scholar
  24. 24.
    Rubinstein I (1995) Physical electrochemistry: principles, methods, and applications. Marcel Dekker, New YorkGoogle Scholar
  25. 25.
    Montenegro MI, Queiros MA, Daschbach JL, eds. (1991) Microelectrodes: theory and Applications. Kluwer, Dordrecht, the NetherlandsGoogle Scholar
  26. 26.
    Sanderson DG, Anderson LB (1985) Anal Chem 57:2388–2393CrossRefGoogle Scholar
  27. 27.
    Chidsey CE, Feldman BJ, Lundgren C, Murray RW (1986) Anal Chem 58:601–607CrossRefGoogle Scholar
  28. 28.
    Niwa O, Morita M, Tabei H (1990) Anal Chem 62:447–452CrossRefGoogle Scholar
  29. 29.
    Sheppard NF, Tucker RC, Wu C (1993) Anal Chem 65:1199–1202CrossRefGoogle Scholar
  30. 30.
    Timmer B, Sparreboom W, Olthuis W, Bergveld P, van den Berg A (2002) Lab Chip 2:121–124CrossRefGoogle Scholar
  31. 31.
    Jaffrezic-Renault N, Dzyadevych SV (2008) Sensors 8:2569–2588CrossRefGoogle Scholar
  32. 32.
    Niwa O, Morita M, Tabei H (1991) Electroanal 3:163–168CrossRefGoogle Scholar
  33. 33.
    Vandaveer WR IV, Woodward DJ, Fritsch I (2003) Electrochim Acta 48:3341–3348CrossRefGoogle Scholar
  34. 34.
    Nebling E, Grunwald T, Albers J, Schafer P, Hintsche R (2004) Anal Chem 76:689–696CrossRefGoogle Scholar
  35. 35.
    Male KB, Luong JHT (2003) J Chromatogr A 1003:167–178CrossRefGoogle Scholar
  36. 36.
    Liu Z, Niwa O, Kurita R, Horiuchi T (2000) Anal Chem 72:1315–1321CrossRefGoogle Scholar
  37. 37.
    Ueno K, Hayashida M, Ye J-Y, Misawa H (2005) Electrochem Commun 7:161–165CrossRefGoogle Scholar
  38. 38.
    Hayashi K, Takahashi J, Horiuchi T, Iwasaki Y, Haga T (2008) J Electrochem Soc 155:J240–J243CrossRefGoogle Scholar
  39. 39.
    Bange A, Tu J, Zhu XS, Ahn C, Halsall HB, Heineman WR (2007) Electroanal 19:2202–2207CrossRefGoogle Scholar
  40. 40.
    Zevenbergen MAG, Krapf D, Zuiddam MR, Lemay SG (2007) Nano Lett 7:384–388CrossRefGoogle Scholar
  41. 41.
    Strutwolf J, Williams DE (2005) Electroanal 17:169–177CrossRefGoogle Scholar
  42. 42.
    Yang XL, Zhang GG (2007) Sens Actuat B-Chem 126:624–631CrossRefGoogle Scholar
  43. 43.
    Min JH, Baeumner AJ (2004) Electroanal 16:724–729CrossRefGoogle Scholar
  44. 44.
    Odijk M, Olthuis W, Dam VAT, van den Berg A (2008) Electroanal 20:463–468CrossRefGoogle Scholar
  45. 45.
    Dam VAT, Olthuis W, Berg AVD (2007) Analyst 132:365–370CrossRefGoogle Scholar
  46. 46.
    Wolfrum B, Zevenbergen M, Lemay S (2008) Anal Chem 80:972–977CrossRefGoogle Scholar
  47. 47.
    Zevenbergen MAG, Wolfrum B, Goluch ED, Lemay SG. Unpublished resultsGoogle Scholar
  48. 48.
    Aoki A, Matsue T, Uchida I (1990) Anal Chem 62:2206–2210CrossRefGoogle Scholar
  49. 49.
    Sparreboom W, Eijkel JCT, Bomer J, Berg AVD (2008) Lab Chip 8:402–407CrossRefGoogle Scholar
  50. 50.
    Sotomayor MDPT, Sigoli A, Lanza MRV, Tanaka AA, Kubota LT (2008) J Brazil Chem Soc 19:734–743Google Scholar
  51. 51.
    Whelpton R, Fernandes K, Wilkinson KA, Goldhill DR (1993) Biomed Chromatogr 7:90–93CrossRefGoogle Scholar
  52. 52.
    Davidson FD (2004) Ann Clin Biochem 41:316–320CrossRefGoogle Scholar
  53. 53.
    Hayashi K, Iwasaki Y, Kurita R, Sunagawa K, Niwa O (2003) Electrochem Commun 5:1037–1042CrossRefGoogle Scholar
  54. 54.
    Paixao T, Richter EM, Brito-Neto JGA, Bertotti M (2006) Electrochem Commun 8:9–14CrossRefGoogle Scholar
  55. 55.
    Perone SP, Kretlow WJ (1966) Anal Chem 38:1760–1763CrossRefGoogle Scholar
  56. 56.
    Wehmeyer KR, Wightman RM (1985) Anal Chem 57:1989–1993CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Edgar D. Goluch
    • 1
  • Bernhard Wolfrum
    • 1
    • 2
  • Pradyumna S. Singh
    • 1
  • Marcel A. G. Zevenbergen
    • 1
  • Serge G. Lemay
    • 1
    Email author
  1. 1.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
  2. 2.IBN-2, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations