Analytical and Bioanalytical Chemistry

, Volume 394, Issue 2, pp 437–446 | Cite as

Investigating the translocation of λ-DNA molecules through PDMS nanopores

Original Paper

Abstract

We investigate the translocation of λ-DNA molecules through resistive-pulse polydimethylsiloxane (PDMS) nanopore sensors. Single molecules of λ-DNA were detected as a transient current increase due to the effect of DNA charge on ionic current through the pore. DNA translocation was found to deviate from a Poisson process when the interval between translocations was comparable to the duration of translocation events, suggesting that translocation was impeded during the presence of another translocating molecule in the nanopore. Characterization of translocation at different voltage biases revealed that a critical voltage was necessary to drive DNA molecules through the nanopore. Above this critical voltage, frequency of translocation events was directly proportional to DNA concentration and voltage bias, suggesting that transport of DNA from the solution to the nanopore was the rate limiting step. These observations are consistent with experimental results on transport of DNA through nanopores and nanoslits and the theory of hydrodynamically driven polymer flow in pores.

Keywords

Nanopore DNA Resistive-pulse Biosensing PDMS Translocation 

References

  1. 1.
    Deamer DW, Akeson M (2000) Trends in Biotech 18:147–151CrossRefGoogle Scholar
  2. 2.
    Bayley H, Martin CR (2000) Chemical Reviews 100:2575–2594CrossRefGoogle Scholar
  3. 3.
    Kasianowicz J, Brandin E, Branton D, Deamer D (1996) Proc Natl Acad Sci U S A 93:13770–13773CrossRefGoogle Scholar
  4. 4.
    Saleh O, Sohn L (2003) Nano Lett 3:37–38CrossRefGoogle Scholar
  5. 5.
    Fan R, Karnik R, Yue M, Li DY, Majumdar A, Yang PD (2005) Nano Lett 5:1633–1637CrossRefGoogle Scholar
  6. 6.
    Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR (2005) J Am Chem Soc 127:5000–5001CrossRefGoogle Scholar
  7. 7.
    Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Nature Materials 2:537–540CrossRefGoogle Scholar
  8. 8.
    Gershow M, Golovchenko JA (2007) Nature Nanotechnology 2:775–779CrossRefGoogle Scholar
  9. 9.
    Sen Y-H, Karnik R (2008) Proceedings of micro total analysis systems, San Diego, CAGoogle Scholar
  10. 10.
    Chen P, Gu JJ, Brandin E, Kim YR, Wang Q, Branton D (2004) Nano Lett 4:2293–2298CrossRefGoogle Scholar
  11. 11.
    Meller A, Branton D (2002) Electrophoresis 23:2583–2591CrossRefGoogle Scholar
  12. 12.
    Storm AJ, Storm C, Chen JH, Zandbergen H, Joanny JF, Dekker C (2005) Nano Lett 5:1193–1197CrossRefGoogle Scholar
  13. 13.
    Chang H, Kosari F, Andreadakis G, Alam M, Vasmatzis G, Bashir R (2004) Nano Lett 4:1551–1556CrossRefGoogle Scholar
  14. 14.
    Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Nano Lett 6:89–95CrossRefGoogle Scholar
  15. 15.
    Karnik R, Castelino K, Fan R, Yang P, Majumdar A (2005) Nano Lett 5:1638–1642CrossRefGoogle Scholar
  16. 16.
    Saleh OA, Sohn LL (2001) Review of Scientific Instruments 72:4449–4451CrossRefGoogle Scholar
  17. 17.
    Han J, Turner SW, Craighead HG (1999) Phys Rev Lett 83:1688–1691CrossRefGoogle Scholar
  18. 18.
    Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ (2000) Phys Rev Lett 85:3057–3060CrossRefGoogle Scholar
  19. 19.
    Han J, Craighead H (2000) Science 288:1026–1029CrossRefGoogle Scholar
  20. 20.
    Daoudil SBF (1978) Macromolecules 11:751–758CrossRefGoogle Scholar
  21. 21.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Analytical Chemistry 70:4974–4984CrossRefGoogle Scholar
  22. 22.
    Drake AW (1967) Fundamentals of applied probability theory. McGraw-Hill, New YorkGoogle Scholar
  23. 23.
    Daoudi S, Brochard F (1978) Macromolecules 11:751–758CrossRefGoogle Scholar
  24. 24.
    Verma R, Crocker JC, Lubensky TC, Yodh AG (1998) Phys Rev Lett 81:4004–4007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations