Skip to main content
Log in

Capillary waveguide fluoroimmunosensor with improved repeatability and detection sensitivity

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An optical capillary waveguide fluoroimmunosensor based on glass capillaries internally coated with an ultrathin poly(dimethylsiloxane) (PDMS) film is presented. The evaluation of the capillaries developed was done in comparison with aminosilanized [3-(aminopropyl)triethoxysilane, APTES] glass and poly(methylpentene) (PMP) capillaries by immobilizing rabbit γ-globulins on the internal capillary wall. Following reaction with (R)-phycoerythrin-labelled antibody, the capillary was scanned with a laser beam and the fluorescence waveguided through the capillary wall was detected by a photomultiplier placed at one of its ends. The capillaries developed provided considerably improved protein coating homogeneity (intracapillary coefficients of variation 2.9–6.6%) and repeatability (intercapillary coefficients of variation 2.1–5.0%) compared with APTES-treated ones (7.9–13.4 and 8.5–15.2%, respectively). With use of these capillaries in a sandwich-type immunosensor for the determination of rabbit γ-globulins, the assay detection limit was improved eightfold (4.4 ng/mL) compared with that obtained using PMP capillaries (35.3 ng/mL), whereas the assay repeatability was improved threefold (intra-assay coefficients of variation 5.9–13.1%) compared with APTES-treated capillaries (15.6–36%).

Optoelectronic set-up used to scan the capillaries (left) and representative fluorescence scannings of dual-band poly(methylpentene) (PMP), PDMS-modified glass and APTES treated glass capillaries

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Misiakos K, Kakabakos SE (1998) Biosens Bioelectron 13:825–830

    Article  CAS  Google Scholar 

  2. Ligler FS, Breimer M, Golden JP, Nivens DA, Dodson JP, Green TM, Haders DP, Omowunmi AS (2002) Anal Chem 74:713–719

    Article  CAS  Google Scholar 

  3. Narang U, Gauger PR, Kusterbeck AW, Ligler FS (1998) Anal Biochem 255:13–19

    Article  CAS  Google Scholar 

  4. Sheikh SH, Mulchandani A (2001) Biosens Bioelectron 16:647–652

    Article  CAS  Google Scholar 

  5. Mastichiadis C, Kakabakos SE, Christofidis I, Koupparis MA, Willetts C, Misiakos K (2002) Anal Chem 74:6064–6072

    Article  CAS  Google Scholar 

  6. Petrou PS, Kakabakos SE, Christofidis I, Argitis P, Misiakos K (2002) Biosens Bioelectron 17:261–268

    Article  CAS  Google Scholar 

  7. Ho J-AA, Hsu H-W, Huang M-R (2004) Anal Biochem 330:342–349

    Article  CAS  Google Scholar 

  8. Bratcher CL, Grant SA, Vassalli JT, Lorenzen CL (2008) Biosens Bioelectron 23:1674–1679

    Article  CAS  Google Scholar 

  9. Yacoub-George E, Meixner L, Scheithauer W, Koppi A, Drost S, Wolf H, Danapel C, Feller KA (2002) Anal Chim Acta 457:3–12

    Article  CAS  Google Scholar 

  10. Charles PT, Rangasammy JG, Anderson GP, Romanoski TC, Kusterbeck AW (2004) Anal Chim Acta 525:199–204

    Article  CAS  Google Scholar 

  11. Torabi F, Far HRM, Danielsson B, Khayyami M (2007) Biosens Bioelectron 22:1218–1223

    Article  CAS  Google Scholar 

  12. Halliwell CM, Cass EG (2001) Anal Chem 73:2476–2483

    Article  CAS  Google Scholar 

  13. Tätte T, Saal K, Kink I, Kurg A, Lõhmus R, Mäeorg U, Rahi M, Rinken A, Lõhmus A (2003) Surf Sci 532–535:1085–1091

    Article  Google Scholar 

  14. Balakirev MY, Porte S, Vermaz-Gris M, Berger M, Arie J-P, Fouque B, Chatelain F (2005) Anal Chem 77:5474–5479

    Article  CAS  Google Scholar 

  15. Wolfbeis OS (1996) Trends Anal Chem 15:225–232

    CAS  Google Scholar 

  16. Somasundaran P, Mehta SC, Purohit P (2006) Adv Colloid Interface Sci 128–130:103–109

    Article  Google Scholar 

  17. Sia SK, Whitesides GM (2003) Electrophoresis 24:3563–3576

    Article  CAS  Google Scholar 

  18. Delamarche E, Juncker D, Schmid H (2005) Adv Mater 17:2911–2933

    Article  CAS  Google Scholar 

  19. Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) Lab Chip 5:1348–1354

    Article  CAS  Google Scholar 

  20. Butler JE, Navarro P, Christiansen B (1997) J Mol Recognit 10:36–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the BRITE/EURAM III project BOEMIS (BRPR CT-97-0393) and the Greek General Secretary for Research and Technology (GSRT) Program, I/R-RP-Excellence in Research II, 2005 (75% funded by the EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios E. Kakabakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niotis, A.E., Mastichiadis, C., Petrou, P.S. et al. Capillary waveguide fluoroimmunosensor with improved repeatability and detection sensitivity. Anal Bioanal Chem 393, 1081–1086 (2009). https://doi.org/10.1007/s00216-008-2501-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2501-2

Keywords

Navigation