Skip to main content

RNA detection using peptide-inserted Renilla luciferase

Abstract

A novel complementation system with short peptide-inserted-Renilla luciferase (PI-Rluc) and split-RNA probes was constructed for noninvasive RNA detection. The RNA binding peptides HIV-1 Rev and BIV Tat were used as inserted peptides. They display induced fit conformational changes upon binding to specific RNAs and trigger complementation or discomplementation of Rluc. Split-RNA probes were designed to reform the peptide binding site upon hybridization with arbitrarily selected target RNA. This set of recombinant protein and split-RNA probes enabled a high degree of sensitivity in RNA detection. In this study, we show that the Rluc system is comparable to Fluc, but that its detection limit for arbitrarily selected RNA (at least 100 pM) exceeds that of Fluc by approximately two orders of magnitude.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Wassarman KM, Storz G (2000) Cell 101:613–623

    Article  CAS  Google Scholar 

  2. Gilfillan GD, Dahlsveen IK, Becker BP (2004) FEBS Lett 567:8–14

    Article  CAS  Google Scholar 

  3. Wutz A, Rasmussen TP, Jaenisch R (2002) Nature Genet 30:167–174

    Article  CAS  Google Scholar 

  4. Banerjee D, Slack F (2002) BioEssays 24:119–129

    Article  CAS  Google Scholar 

  5. Feinbaum R, Ambros V (1999) Dev Biol 210:87–95

    Article  CAS  Google Scholar 

  6. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz R, Ruvkun G (2000) Nature 403:901–906

    Article  CAS  Google Scholar 

  7. Tyagi S, Kramer FR (1996) Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  8. Sokol DL, Zhang XZ, Lu P, Gewirtz AM (1998) Proc Natl Acad Sci USA 95:11538–11543

    Article  CAS  Google Scholar 

  9. Perlette J, Tan W (2001) Anal Chem 73:5544–5550

    Article  CAS  Google Scholar 

  10. Mhlanga MM, Tyagi S (2006) Nat Protoc 1:1392–1398

    Article  CAS  Google Scholar 

  11. Nitin N, Santangelo PJ, Kim G, Nie S, Bao G (2004) Nucleic Acids Res 32:e58

    Article  CAS  Google Scholar 

  12. Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, Ishibashi K (2000) Biophys J 78:3260–3274

    CAS  Article  Google Scholar 

  13. Endoh T, Funabashi H, Mie M, Kobatake E (2005) Anal Chem 77:4308–4314

    Article  CAS  Google Scholar 

  14. Endoh T, Mie M, Funabashi H, Sawasaki T, Endo Y, Kobatake E (2007) Bioconjugate Chem 18:956–962

    Article  CAS  Google Scholar 

  15. Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001) Anal Chem 73:2516–2521

    Article  CAS  Google Scholar 

  16. Paulmurugan R, Gambhir SS (2005) Anal Chem 77:1295–1302

    Article  CAS  Google Scholar 

  17. Paulmurugan R, Umezawa Y, Gambhir SS (2002) Proc Natl Acad Sci USA 99:15608–15613

    Article  CAS  Google Scholar 

  18. Luker KE, Smith MCP, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Proc Natl Acad Sci USA 101:12288–12293

    Article  CAS  Google Scholar 

  19. Kanno A, Yamanaka Y, Hirano H, Umezawa Y, Ozawa T (2007) Angew Chem Int Ed Engl 46:7595–7599

    Article  CAS  Google Scholar 

  20. Kim SB, Awais M, Sato M, Umezawa Y, Tao H (2007) Anal Chem 79:1874–1880

    Article  CAS  Google Scholar 

  21. Paulmurugan R, Massoud TF, Huang J, Gambhir SS (2004) Cancer Res 64:2113–2119

    Article  CAS  Google Scholar 

  22. Massoud TF, Paulmurugan R, Gambhir SS (2004) FASEB J 18:1105–1107

    CAS  Google Scholar 

  23. Kaihara A, Kawai Y, Sato M, Ozawa T, Umezawa Y (2003) Anal Chem 75:4176–4181

    Article  CAS  Google Scholar 

  24. Kim SB, Ozawa T, Watanabe S, Umezawa Y (2004) Proc Natl Acad Sci USA 101:11542–11547

    Article  CAS  Google Scholar 

  25. Paulmurugan R, Gambhir SS (2006) Proc Natl Acad Sci USA 103:15883–15888

    Article  CAS  Google Scholar 

  26. Paulmurugan R, Gambhir SS (2003) Anal Chem 75:1584–1589

    Article  CAS  Google Scholar 

  27. Liu J, Escher A (1999) Gene 237:153–159

    Article  CAS  Google Scholar 

  28. Tan R, Frankel AD (1994) Biochemistry 33:14579–14585

    Article  CAS  Google Scholar 

  29. Battiste JL, Mao H, Rao NS, Tan R, Muhandiram DR, Kay LE, Frankel AD, Williamson JR (1996) Science 273:1547–1551

    Article  CAS  Google Scholar 

  30. Xu W, Ellington AD (1996) Proc Natl Acad Sci USA 93:7475–7480

    Article  CAS  Google Scholar 

  31. Ye X, Gorin A, Frederick R, Hu W, Majumdar A, Xu W, McLendon G, Ellington A, Patel DJ (1996) Chem Biol 6:657–669

    Article  Google Scholar 

  32. Puglisi JD, Chen L, Blanchard S, Frankel AD (1995) Science 270:1200–1203

    Article  CAS  Google Scholar 

  33. Calabro V, Daugherty MD, Frankel AD (2005) Proc Natl Acad Sci USA 102:6849–6854

    Article  CAS  Google Scholar 

  34. Chen L, Frankel AD (1995) Proc Natl Acad Sci USA 92:5077–5081

    Article  CAS  Google Scholar 

  35. Feliu JX, Ramirez E, Villaverde A (1998) FEBS Lett 438:267–271

    Article  CAS  Google Scholar 

  36. Tucker CL, Fields S (2001) Nat Biotechnol 19:1042–1046

    Article  CAS  Google Scholar 

  37. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Nature 388:882–887

    Article  CAS  Google Scholar 

  38. Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WRG (2001) Proc Natl Acad Sci USA 98:2437–2442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiry Kobatake.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andou, T., Endoh, T., Mie, M. et al. RNA detection using peptide-inserted Renilla luciferase. Anal Bioanal Chem 393, 661 (2009). https://doi.org/10.1007/s00216-008-2473-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-008-2473-2

Keywords

  • RNA detection
  • Complementation assay
  • Renilla luciferase
  • Arginine-rich motif peptide
  • RNA probe