Skip to main content

Advertisement

Log in

Experimental and theoretical studies of the optimisation of fluorescence from near-infrared dye-doped silica nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

There is substantial interest in the development of near-infrared dye-doped nanoparticles (NPs) for a range of applications including immunocytochemistry, immunosorbent assays, flow cytometry, and DNA/protein microarray analysis. The main motivation for this work is the significant increase in NP fluorescence that may be obtained compared with a single dye label, for example Cy5. Dye-doped NPs were synthesised and a reduction in fluorescence as a function of dye concentration was correlated with the occurrence of homo-Förster resonance energy transfer (HFRET) in the NP. Using standard analytical expressions describing HFRET, we modelled the fluorescence of NPs as a function of dye loading. The results confirmed the occurrence of HFRET which arises from the small Stokes shift of near-infrared dyes and provided a simple method for predicting the optimum dye loading in NPs for maximum fluorescence. We used the inverse micelle method to prepare monodispersed silica NPs. The NPs were characterised using dynamic light scattering, UV spectroscopy, and transmission electron microscopy (TEM). The quantum efficiency of the dye inside the NPs, as a function of dye loading, was also determined. The fluorescent NPs were measured to be approximately 165 times brighter than the free dye, at an optimal loading of 2% (w/w). These experimental results were in good agreement with model predictions.

The change in nanoparticle fluorescence versus increased dye loading modelled using homo-Förster resonance energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haugland RP (2005) The handbook—a guide to fluorescent probes and labelling technologies. Molecular Probes, Eugene

    Google Scholar 

  2. Burns A, Ow H, Wiesner U (2006) Chem Soc Rev 35:1028–1042

    Article  CAS  Google Scholar 

  3. Wang F, Tan W, Zhang Y, Fan X, Wang M (2006) Nanotechnology 17:R1–R13

    Article  CAS  Google Scholar 

  4. Medintz I, Uyeda H, Goldman E, Mattoussi H (2005) Nature Mater 4:435–446

    Article  CAS  Google Scholar 

  5. Chan WCW, Nie SM (1998) Science 285:2016–2018

    Article  Google Scholar 

  6. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  7. Ow H, Larson D, Srivastava M, Baird B, Webb W, Wiesner U (2005) Nano Lett 5:113–117

    Article  CAS  Google Scholar 

  8. Osseo-Asare K, Arriagada FJ (1990) Colloids Surf 50:321–339

    Article  CAS  Google Scholar 

  9. Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Anal Chem 73:4988–4993

    Article  CAS  Google Scholar 

  10. Lian W, Litherland SA, Badrane H, Tan W, Wu D, Baker HV, Gulig PA, Lim DV, Jin S (2004) Anal Biochem 334:135–144

    Article  CAS  Google Scholar 

  11. Hoon KS, Jeyakumar M, Katzenellenbogen JA (2007) J Am Chem Soc 129:13254–13264

    Article  Google Scholar 

  12. Wang L, Tan W (2006) Nano Lett 6:84–88

    Article  CAS  Google Scholar 

  13. Wang L, Zhao W, O’Donoghue MB, Tan W (2007) Bioconj Chem 18:297–301

    Article  CAS  Google Scholar 

  14. Deng T, Li J-S, Jiang J-H, Shen G-L, Yu R-Q (2006) Adv Funct Mater 16:2147–2155

    Article  CAS  Google Scholar 

  15. Mank AJG, Yeung ES (1995) J. Chromatogr A 708:309–321

    Article  CAS  Google Scholar 

  16. Novotny L, Hecht B (2007) Principles of nano-optics. Cambridge University Press, UK

    Google Scholar 

  17. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic Press, New York

    Google Scholar 

  18. Yao G, Wang L, Wu Y, Smith J, Xu J, Zhao W, Lee E, Tan W (2006) Anal Bioanal Chem 385:518–524

    Article  CAS  Google Scholar 

  19. Bagwe RP, Hilliard LR, Tan W (2006) Langmuir 22:4357–4362

    Article  CAS  Google Scholar 

  20. Zhao X, Bagwe RP, Tan W (2004) Adv Mater 16:173–176

    Article  CAS  Google Scholar 

  21. West W, Pearce S (1965) J Phys Chem 69:1894–1903

    Article  CAS  Google Scholar 

  22. Williams ATR, Winfield SA, Miller JN (1983) Analyst 108:1067–1071

    Article  CAS  Google Scholar 

  23. Larsons DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Chem Mater 20:2677–2684

    Article  Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the Science Foundation Ireland under Grant No. 05/CE3/B754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. MacCraith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nooney, R.I., McCahey, C.M.N., Stranik, O. et al. Experimental and theoretical studies of the optimisation of fluorescence from near-infrared dye-doped silica nanoparticles. Anal Bioanal Chem 393, 1143–1149 (2009). https://doi.org/10.1007/s00216-008-2418-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2418-9

Keywords

Navigation