Skip to main content
Log in

Multianalytical approach to the analysis of English polychromed alabaster sculptures: μRaman, μEDXRF, and FTIR spectroscopies

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A complete study of several English polychromed alabaster sculptures is presented. The support, pigment, and binders were characterised by combining μEDXRF, μRaman, and FTIR spectroscopies. Among the pigments, minium, vermilion, lead white, carbon black, red iron oxide, and a degraded green copper pigment were determined, together with gold leaf. The presence of the rare mineral moolooite (copper oxalate) was also found as a degradation product in the green areas, where weddellite (calcium oxalate dihydrate) was also determined. These facts, together with degradation of the green copper pigment, suggest microbiological degradation of the original materials. Remains of glue and a varnish were also determined by FTIR spectroscopy and principal-components analysis (PCA) of the spectra. Finally, PCA analysis was carried out to confirm whether the pieces came from the same quarry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheetham F (2003) Alabaster images of Medieval England. Boydell and Brewer, Rochester NY

    Google Scholar 

  2. Ligeza M, Panczyk E, Rowinska L, Walis L, Nalepa B (2001) Nukleonika 46:71–74

    CAS  Google Scholar 

  3. Costagliola P, Benvenuti M, Corsini F, Maineri C, Mascaro I (2001) Eur J Mineral 13:421–428

    Article  CAS  Google Scholar 

  4. De Luxan MP, Dorrego F, Sotolongo R (2000) Mater Construct 50:27–36

    Google Scholar 

  5. Frey R (1991) Bautenschutz und Bausanierung 14:91–92

    CAS  Google Scholar 

  6. Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Etxebarria N, Madariaga JM (2007) Anal Bioanal Chem 387:847–860

    Article  CAS  Google Scholar 

  7. Martinez-Arkarazo I, Angulo M, Bartolome L, Etxebarria N, Olazabal MA, Madariaga JM (2007) Anal Chim Acta 584:350–359

    Article  CAS  Google Scholar 

  8. Domenech-Carbó MT, Casas-Catalan MJ, Domenech-Carbo A, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F (2001) Fresenius J Anal Chem 369:571–575

    Article  Google Scholar 

  9. Sarmiento A, Pérez-Alonso M, Castro K, Martinez-Arkarazo I, Etxebarria N, Madariaga JM (2008) Anal Chim Acta submitted for publication

  10. Castro K, Sarmiento A, Princi E, Pérez-Alonso M, Rodríguez-Laso MD, Vicini S, Madariaga JM, Pedemonte E (2007) Trends Anal Chem 26:347–359

    Article  CAS  Google Scholar 

  11. Castro K, Perez-Alonso M, Rodriguez-Laso MD, Fernandez LA, Madariaga JM (2005) Anal Bioanal Chem 382:248–258

    Article  CAS  Google Scholar 

  12. Playa E, Rosell L (2005) Chem Geol 221:102–116

    Article  CAS  Google Scholar 

  13. Lu FH, Meyers WJ, Hanson GN (2002) Chem Geol 192:149–161

    Article  CAS  Google Scholar 

  14. D’Antonio MC, Palacios D, Coggiola L, Baran EJ (2007) Spectrochim Acta A 68:424–426

    Article  CAS  Google Scholar 

  15. Frost RL (2004) Anal Chim Acta 517:207–214

    Article  CAS  Google Scholar 

  16. Castro K, Sarmiento A, Martínez-Arkarazo I, Madariaga JM, Fernández LA (2008) Anal Chem 80:4103–4110

    Article  CAS  Google Scholar 

  17. Clarke RM, Williams IR (1986) Mineral Mag 50:295–298

    Article  CAS  Google Scholar 

  18. Villar SEJ, Edwards HGM, Medina J, Perez FR (2006) J Raman Spectrosc 37:1078–1085

    Article  CAS  Google Scholar 

  19. Hernanz A, Gavira-Vallejo JM, Ruiz-Lopez JF (2007) J Optoelectron Adv Mater 9:512–521

    CAS  Google Scholar 

  20. Chisholm JE, Jones GC, Purvis OW (1987) Mineral Mag 51:715–718

    Article  CAS  Google Scholar 

  21. Lepot L, Denoel S, Gilbert B (2006) J Raman Spectrosc 37:1098–1103

    Article  CAS  Google Scholar 

  22. Cariati F, Rampazzi L, Toniolo L, Pozzi A (2000) Stud Conserv 45:180–188

    Article  CAS  Google Scholar 

  23. Rampazzi L, Andreotti A, Bonaduce I, Colombini MP, Colombo C, Toniolo L (2004) Talanta 63:967–977

    Article  CAS  Google Scholar 

  24. Kireyeva V (1995) Restaurator 16:86–92

    Article  Google Scholar 

  25. Olivares M, Etxebarria N, Arana G, Castro K, Murelaga X, Berreteaga A (2008) X-ray Spectrom. doi:10.1002/xrs.1023

Download references

Acknowledgements

A. Sarmiento is grateful to the Spanish Ministry of Education and Science for his FPU fellowship. M. Maguregui is grateful to the UPV/EHU for her fellowship. This work was partially funded by Universidad-Empresa Project PIETRA (ref. UE05-A09). The authors want to thank Museo Diocesano y Arte Sacro de Bilbao for all their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kepa Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, K., Sarmiento, A., Maguregui, M. et al. Multianalytical approach to the analysis of English polychromed alabaster sculptures: μRaman, μEDXRF, and FTIR spectroscopies. Anal Bioanal Chem 392, 755–763 (2008). https://doi.org/10.1007/s00216-008-2317-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2317-0

Keywords

Navigation