Skip to main content

Comparison of high-resolution and dynamic reaction cell ICP-MS capabilities for forensic analysis of iron in glass

Abstract

Forensic laboratories routinely conduct analysis of glass fragments to determine whether or not there is an association between a fragment(s) recovered from a crime scene or from a suspect to a particular source of origin. The physical and optical (refractive index) properties of the fragments are compared and, if a “match” between two or more fragments is found, further elemental analysis can be performed to enhance the strength of the association. A range of spectroscopic techniques has been used for elemental analysis of this kind of evidence, including inductively coupled plasma mass spectrometry (ICP-MS). Because of its excellent sensitivity, precision, and accuracy, several studies have found that ICP-MS methods (dissolution and laser-ablation) provide the best discrimination between glass fragments originating from different sources. Nevertheless, standard unit-resolution ICP-MS instruments suffer from polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and refractory oxide 40Ca16O+ that compromise measurements of trace levels of Fe56+ and Fe57+, for example. This is a drawback in the analysis of glass fragments because iron has been previously identified as a good discriminating element. Currently, several techniques are available that enable reduction of such interferences. However, there are no data comparing detection limits of iron in glass using those techniques. The aim of this study was to compare, the analytical performance of high-resolution sector field inductively coupled plasma mass spectrometry (HR-SF-ICP-MS) and quadrupole ICP-MS equipped with a dynamic reaction cell (DRC-ICP-MS), for the detection of iron in glass, in terms of accuracy, precision, and method detection limits (MDLs). Analyses were conducted using conventional acid-digestion and laser-ablation methods. For laser-ablation analyses, carrier gases were compared to assess the effect on detection limits in the detection of iron isotopes. Iron polyatomic interferences were reduced or resolved by using a dynamic reaction cell and high-resolution ICP-MS. MDLs as low as 0.03 μg g−1 and 0.14 μg g−1 were achieved in laser-ablation and solution-based analyses, respectively. Use of helium as carrier gas improved detection limits for both iron isotopes in medium-resolution HR-SF-ICP-MS and in DRC-ICP-MS.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) Geostandard Newslett 21:115–144

    Article  CAS  Google Scholar 

  2. Brown G (1985) J Forensic Sci 39:806–813

    Google Scholar 

  3. Almirall JR, Cole M, Gettinby G, Furton K (1998) Sci Justice 38:93–100

    Article  CAS  Google Scholar 

  4. American Society for Testing Materials (2003) (E1967–98 R03) Standard test method for the automated determination of refractive index of glass samples using the oil immersion method and a phase contrast microscope. In: ASTM Annual Book of ASTM Standards, vol 14.2. American Society for Testing Materials, West Conshohocken, PA, p 664

  5. Locke J (1987) Microscope 35:151

    CAS  Google Scholar 

  6. Duckworth DC, Bayne CK, Morton DJ, Almirall JR (2000) J Anal At Spectrom 15:821

    Article  CAS  Google Scholar 

  7. Montero S, Hobbs AL, French TA, Almirall JR (2003) J Forensic Sci 48:1101–1107

    CAS  Google Scholar 

  8. Koons RD, Peters CA, Rebbert PS (1991) J Anal At Spectrom 6:451

    Article  CAS  Google Scholar 

  9. Parouchais T, Warner IM, Palmer LT, Kobus II (1996) J Forensic Sci 41:351

    CAS  Google Scholar 

  10. Almirall JR (2001) Manslaughter caused by a hit and run: glass as evidence of association. In: Ilouck, M (eds) Mute witness: trace evidence analysis. Academic Press, San Diego, CA, p 139

    Google Scholar 

  11. Buscaglia J (1994) Anal Chim Acta 288:17–24

    Article  CAS  Google Scholar 

  12. Thornton JI, Langhauser C, Kehane D (1984) J Forensic Sci 29:711

    Google Scholar 

  13. Catterick T, Wall C (1978) Talanta 25:573–577

    Article  CAS  Google Scholar 

  14. Catterick T, Hughes J, Southeard G (1976) J Forensic Sci 8:217–227

    Article  Google Scholar 

  15. Almirall JR (2001) Elemental analysis of glass fragments. In: Caddy, B (eds) Forensic examination of glass and paint. Taylor and Francis, London, pp 65–83

    Google Scholar 

  16. Ryland S (1986) J Forensic Sci 31:1314

    CAS  Google Scholar 

  17. Dudley RJ, Howden CR, Taylor TJ, Smalldon KW (1980) X-ray Spectrom 9:119

    Article  CAS  Google Scholar 

  18. Coleman RF, Goode GC (1973) J Radioanal Chem 15:367–388

    Article  CAS  Google Scholar 

  19. Jembrih D, Schreiner M, Peev M, Krejsa P, Clausen C (2000) Mikrochim Acta 133:151–157

    CAS  Google Scholar 

  20. Zadora G, Brozek-Mucha Z (2003) Mater Chem Phys 81:345–348

    Article  CAS  Google Scholar 

  21. Andrasko J, Maehly A (1978) J Forensic Sci 23:250–262

    CAS  Google Scholar 

  22. Hickman DA (1981) Forensic Sci Int 17:265

    Article  CAS  Google Scholar 

  23. Hickman DA (1987) Forensic Sci Int 33:23

    Article  Google Scholar 

  24. Almirall JR (1998) PhD thesis, University of Strathclyde, UK

  25. Suzuki Y, Sugita R, Suzuki S, Marumo Y (2000) Anal Sci 16:1195

    Article  CAS  Google Scholar 

  26. Zurhaar A, Mullis L (1990) J Anal At Spectrom 5:611

    Article  CAS  Google Scholar 

  27. American Society for Testing Materials (2004) (E2330–04) Standard test method for the determination of trace elements in glass using inductively coupled plasma mass spectrometry. In: ASTM annual book of ASTM standards, vol 14.2. American Society for Testing Materials, West Conshohocken, PA, p 1

  28. Beary ES, Paulsen P (1993) Anal Chem 65:1602–1608

    Article  CAS  Google Scholar 

  29. Trejos T, Montero S, Almirall JR (2003) Anal Bioanal Chem 376:1255–1264

    Article  CAS  Google Scholar 

  30. Latkoczy C, Becker S, Ducking M, Günther D, Hoogewerff JA, Almirall JR, Buscaglia J, Dobney A, Koons RD, Montero S, van der Peijl GJQ, Stoecklein WRS, Trejos T, Watling JR, Zdanowicz VS (2005) J Forensic Sci 50:1327–1341

    Article  CAS  Google Scholar 

  31. Watling RJ, Lynch BF, Herring D (1997) J Anal At Spectrom 12:195–203

    Article  CAS  Google Scholar 

  32. Bajic SJ, Aeschliman DB, Saetveit NJ, Baldwin DP, Houk RS (2005) J Forensic Sci 50:1123–1127

    Article  CAS  Google Scholar 

  33. Copley J, Almirall JR (1999) In: Caddy B (ed) Forensic examination of glass and paint, chap 2, 4. Taylor and Francis, London, pp 39, 67

  34. Koons RD, Fieldler C, Rawalt RC (1988) J Forensic Sci 33:49–67

    CAS  Google Scholar 

  35. Nonose NK (2001) J Anal At Spectrom 16:560–566

    Article  CAS  Google Scholar 

  36. Weyer S, Schwieters JB (2003) Int J Mass Spectrom 226:355–368

    Article  CAS  Google Scholar 

  37. Umpierrez S, Trejos T, Neubauer K, Almirall J (2006) At Spectrosc 27:76–79

    CAS  Google Scholar 

  38. Gürleyük H, Brunette RC, Howard CR, Schneider C, Thomas R (2005) Spectroscopy 20:22–29

    Google Scholar 

  39. Balcaen L, Geuens I, Moens L, Vanhaecke F (2003) Anal Bioanal Chem 377:1020–1025

    Article  CAS  Google Scholar 

  40. Günther D, Hattendorf B, Audétat A (2001) J Anal At Spectrom 16:1085–1090

    Article  Google Scholar 

  41. Flem B, Larsen RB, Grimstvedt A, Mansfeld J (2002) Chem Geol 182:237–247

    Article  CAS  Google Scholar 

  42. Townsend AT (2000) J Anal At Spectrom 15:307–314

    Article  CAS  Google Scholar 

  43. Becker S, Ducking M, Watzke P, Stoecklein W (2003) Forensic Sci Int 136:361

    Google Scholar 

  44. Hill SJ, Ford MJ, Ebdon L (1992) J Anal At Spectrom 7:1157–1165

    Article  CAS  Google Scholar 

  45. Rowan JT, Houk RS (1989) Appl Spectrosc 43:976–980

    Article  CAS  Google Scholar 

  46. Günther D, Heinrich CA (1999) J Anal At Spectrom 14:1363–1368

    Article  Google Scholar 

  47. Horn I, Günther D (2003) Applied Surface Sci 207:144–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Justice (NIJ), grant 2005-IJ-CX-K069. The HR-SF-ICP-MS was acquired with National Science Foundation (NSF) Major Research Instrumentation (MRI) award 0420874 to Florida International University. The Florida International University and the FIU Dissertation Year Fellowship are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Almirall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castro, W., Trejos, T., Naes, B. et al. Comparison of high-resolution and dynamic reaction cell ICP-MS capabilities for forensic analysis of iron in glass. Anal Bioanal Chem 392, 663–672 (2008). https://doi.org/10.1007/s00216-008-2299-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2299-y

Keywords

  • Glass
  • Elemental analysis
  • DRC-ICP-MS
  • HR-SF-ICP-MS
  • Forensic