Skip to main content
Log in

Analysis of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction combined with gas chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method was developed for the determination of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD). Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, and addition of salt, were studied and optimized to obtain the best extraction results. Under the optimum conditions, high enrichment factors for the compounds were achieved ranging from 824 to 912. The recoveries of fungicides in apples at spiking levels of 20.0 μg kg−1 and 70.0 μg kg−1 were 93.0–109.5% and 95.4–107.7%, respectively. The relative standard deviations (RSDs) for the apple samples at 30.0 μg kg−1 of each fungicide were in the range from 3.8 to 4.9%. The limits of detection were between 3.0 and 8.0 μg kg−1. The linearity of the method ranged from 10 to 100 μg kg−1 for the three fungicides, with correlation coefficients (r 2) varying from 0.9982 to 0.9997. The obtained results show that the DLLME combined with GC–ECD can satisfy the requirements for the determination of fungicides in apple samples.

Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD) allows satisfactory determination of fungicides in apple samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kittleson AR (1952) Anal Chem 24:1173–1175

    Article  CAS  Google Scholar 

  2. Wagner J, Wallace V, Lawrence JM (1956) J Agric Food Chem 4:1035–1038

    Article  CAS  Google Scholar 

  3. Guiberteau A, Galeano T, Mora N, Salinas F, Ortíz JM, Vire JC (2001) Comput Chem 25:459–473

    Article  CAS  Google Scholar 

  4. Carabias-Martínez R, Rodríguez-Gonzalo E, García-Jiménez MG, Hernández-Méndez J (1998) J Electroanal Chem 456:193–202

    Article  Google Scholar 

  5. Jamuna M, Naika M, Jeevaratnam K, Bawa AS (2005) J Food Sci Technol 42(2):205–208

    CAS  Google Scholar 

  6. Carabias Martínez R, Rodríguez Gonzalo E, García Jiménez MG, García Pinto C, Pérez Pavón JL, Hernández Méndez J (1996) J Chromatogr A 754:85–96

    Article  Google Scholar 

  7. Cabras P, Angioni A, Caboni P, Garau VL, Melis M, Pirisi FM, Cabitza F (2000) J Agric Food Chem 48:915–916

    Article  CAS  Google Scholar 

  8. Lambropoulou DA, Konstantinou IK, Albanis TA (2000) J Chromatogr A 893:143–156

    Article  CAS  Google Scholar 

  9. Barreda M, López FJ, Villarroya M, Beltran J, García-Baudín JM, Hernández F (2006) J AOAC Int 89:1080–1087

    CAS  Google Scholar 

  10. Bailey R, Belzer W (2007) J Agric Food Chem 55:1150–1155

    Article  CAS  Google Scholar 

  11. Štajnbaher D, Zupančič-Kralj L (2003) J Chromatogr A 1015:185–198

    Article  Google Scholar 

  12. Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  13. Helena P, Locita IK (1999) Trend Anal Chem 18:272–282

    Article  Google Scholar 

  14. Jeannot MA, Cantwell F (1996) Anal Chem 68:2236–2240

    Article  CAS  Google Scholar 

  15. Pedersen-Bjergaard S, Rasmussen KE (1999) Anal Chem 71:2650–2656

    Article  CAS  Google Scholar 

  16. Psillakis E, Kalogerakis N (2002) Trends Anal Chem 21:54–64

    Article  Google Scholar 

  17. Shen G, Hian KL (2002) Anal Chem 74:648–654

    Article  CAS  Google Scholar 

  18. Ahmadi F, Assadi Y, Milani Hosseini SMR, Rezaee M (2006) J Chromatogr A 1101:307–312

    Article  CAS  Google Scholar 

  19. Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  20. Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) J Chromatogr A 1123:1–9

    Article  CAS  Google Scholar 

  21. Demeestere K, Dewulf J, Witte BD, Langenhove HV (2007) J Chromatogr A 1153:130–144

    Article  CAS  Google Scholar 

  22. Zhao EC, Zhao WT, Han LJ, Jiang SR, Zhou ZQ (2007) J Chromatogr A 1175:137–140

    Article  CAS  Google Scholar 

  23. Rahnama Kozani R, Assadi Y, Shemirani F, Milani Hosseini MR, Jamali MR (2007) Talanta 72:387–393

    Article  Google Scholar 

  24. Fattahi N, Assadi Y, Milani Hosseini MR, Zeini Jahromi E (2007) J Chromatogr A 1157:23–29

    Article  CAS  Google Scholar 

  25. Fattahi N, Samadi S, Assadi Y, Milani Hosseini MR (2007) J Chromatogr A 1169:63–69

    Article  CAS  Google Scholar 

  26. Rahnama Kozani R, Assadi Y, Shemirani F, Milani Hosseini MR, Jamali MR (2007) Chromatographia 66:81–86

    Article  Google Scholar 

  27. Farina L, Boido E, Carrau F, Dellacassa E (2007) J Chromatogr A 1157:46–50

    Article  CAS  Google Scholar 

  28. Nagaraju D, Huang SD (2007) J Chromatogr A 1161:89–97

    Article  CAS  Google Scholar 

  29. Farahani H, Norouzi P, Dinarvand R, Reza Ganjali M (2007) J Chromatogr A 1172:105–112

    Article  CAS  Google Scholar 

  30. García-López M, Rodríguez I, Cela R (2007) J Chromatogr A 1166:9–15

    Article  Google Scholar 

  31. Farajzadeh MA, Bahram M, Jonsson JA (2007) Anal Chim Acta 591:69–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported both by the Natural Science Foundations of Hebei (B2006000413 and B2008000210) and by the Scientific Research Foundation of Agricultural University of Hebei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zang, X., Wang, J., Wang, O. et al. Analysis of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction combined with gas chromatography. Anal Bioanal Chem 392, 749–754 (2008). https://doi.org/10.1007/s00216-008-2296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2296-1

Keywords