Analytical and Bioanalytical Chemistry

, Volume 392, Issue 4, pp 749–754 | Cite as

Analysis of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction combined with gas chromatography

  • Xiaohuan Zang
  • Juntao Wang
  • Ou Wang
  • Mingzhao Wang
  • Jingjun Ma
  • Guohong Xi
  • Zhi WangEmail author
Original Paper


A novel method was developed for the determination of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD). Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, and addition of salt, were studied and optimized to obtain the best extraction results. Under the optimum conditions, high enrichment factors for the compounds were achieved ranging from 824 to 912. The recoveries of fungicides in apples at spiking levels of 20.0 μg kg−1 and 70.0 μg kg−1 were 93.0–109.5% and 95.4–107.7%, respectively. The relative standard deviations (RSDs) for the apple samples at 30.0 μg kg−1 of each fungicide were in the range from 3.8 to 4.9%. The limits of detection were between 3.0 and 8.0 μg kg−1. The linearity of the method ranged from 10 to 100 μg kg−1 for the three fungicides, with correlation coefficients (r 2) varying from 0.9982 to 0.9997. The obtained results show that the DLLME combined with GC–ECD can satisfy the requirements for the determination of fungicides in apple samples.


Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD) allows satisfactory determination of fungicides in apple samples


Captan Folpet Captafol Apple GC–ECD Dispersive liquid–liquid microextraction 



This work was supported both by the Natural Science Foundations of Hebei (B2006000413 and B2008000210) and by the Scientific Research Foundation of Agricultural University of Hebei.


  1. 1.
    Kittleson AR (1952) Anal Chem 24:1173–1175CrossRefGoogle Scholar
  2. 2.
    Wagner J, Wallace V, Lawrence JM (1956) J Agric Food Chem 4:1035–1038CrossRefGoogle Scholar
  3. 3.
    Guiberteau A, Galeano T, Mora N, Salinas F, Ortíz JM, Vire JC (2001) Comput Chem 25:459–473CrossRefGoogle Scholar
  4. 4.
    Carabias-Martínez R, Rodríguez-Gonzalo E, García-Jiménez MG, Hernández-Méndez J (1998) J Electroanal Chem 456:193–202CrossRefGoogle Scholar
  5. 5.
    Jamuna M, Naika M, Jeevaratnam K, Bawa AS (2005) J Food Sci Technol 42(2):205–208Google Scholar
  6. 6.
    Carabias Martínez R, Rodríguez Gonzalo E, García Jiménez MG, García Pinto C, Pérez Pavón JL, Hernández Méndez J (1996) J Chromatogr A 754:85–96CrossRefGoogle Scholar
  7. 7.
    Cabras P, Angioni A, Caboni P, Garau VL, Melis M, Pirisi FM, Cabitza F (2000) J Agric Food Chem 48:915–916CrossRefGoogle Scholar
  8. 8.
    Lambropoulou DA, Konstantinou IK, Albanis TA (2000) J Chromatogr A 893:143–156CrossRefGoogle Scholar
  9. 9.
    Barreda M, López FJ, Villarroya M, Beltran J, García-Baudín JM, Hernández F (2006) J AOAC Int 89:1080–1087Google Scholar
  10. 10.
    Bailey R, Belzer W (2007) J Agric Food Chem 55:1150–1155CrossRefGoogle Scholar
  11. 11.
    Štajnbaher D, Zupančič-Kralj L (2003) J Chromatogr A 1015:185–198CrossRefGoogle Scholar
  12. 12.
    Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148CrossRefGoogle Scholar
  13. 13.
    Helena P, Locita IK (1999) Trend Anal Chem 18:272–282CrossRefGoogle Scholar
  14. 14.
    Jeannot MA, Cantwell F (1996) Anal Chem 68:2236–2240CrossRefGoogle Scholar
  15. 15.
    Pedersen-Bjergaard S, Rasmussen KE (1999) Anal Chem 71:2650–2656CrossRefGoogle Scholar
  16. 16.
    Psillakis E, Kalogerakis N (2002) Trends Anal Chem 21:54–64CrossRefGoogle Scholar
  17. 17.
    Shen G, Hian KL (2002) Anal Chem 74:648–654CrossRefGoogle Scholar
  18. 18.
    Ahmadi F, Assadi Y, Milani Hosseini SMR, Rezaee M (2006) J Chromatogr A 1101:307–312CrossRefGoogle Scholar
  19. 19.
    Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9CrossRefGoogle Scholar
  20. 20.
    Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) J Chromatogr A 1123:1–9CrossRefGoogle Scholar
  21. 21.
    Demeestere K, Dewulf J, Witte BD, Langenhove HV (2007) J Chromatogr A 1153:130–144CrossRefGoogle Scholar
  22. 22.
    Zhao EC, Zhao WT, Han LJ, Jiang SR, Zhou ZQ (2007) J Chromatogr A 1175:137–140CrossRefGoogle Scholar
  23. 23.
    Rahnama Kozani R, Assadi Y, Shemirani F, Milani Hosseini MR, Jamali MR (2007) Talanta 72:387–393CrossRefGoogle Scholar
  24. 24.
    Fattahi N, Assadi Y, Milani Hosseini MR, Zeini Jahromi E (2007) J Chromatogr A 1157:23–29CrossRefGoogle Scholar
  25. 25.
    Fattahi N, Samadi S, Assadi Y, Milani Hosseini MR (2007) J Chromatogr A 1169:63–69CrossRefGoogle Scholar
  26. 26.
    Rahnama Kozani R, Assadi Y, Shemirani F, Milani Hosseini MR, Jamali MR (2007) Chromatographia 66:81–86CrossRefGoogle Scholar
  27. 27.
    Farina L, Boido E, Carrau F, Dellacassa E (2007) J Chromatogr A 1157:46–50CrossRefGoogle Scholar
  28. 28.
    Nagaraju D, Huang SD (2007) J Chromatogr A 1161:89–97CrossRefGoogle Scholar
  29. 29.
    Farahani H, Norouzi P, Dinarvand R, Reza Ganjali M (2007) J Chromatogr A 1172:105–112CrossRefGoogle Scholar
  30. 30.
    García-López M, Rodríguez I, Cela R (2007) J Chromatogr A 1166:9–15CrossRefGoogle Scholar
  31. 31.
    Farajzadeh MA, Bahram M, Jonsson JA (2007) Anal Chim Acta 591:69–79CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Xiaohuan Zang
    • 1
  • Juntao Wang
    • 2
  • Ou Wang
    • 2
  • Mingzhao Wang
    • 2
  • Jingjun Ma
    • 1
  • Guohong Xi
    • 1
  • Zhi Wang
    • 1
    Email author
  1. 1.Key Laboratory of Bioinorganic Chemistry, College of ScienceAgricultural University of HebeiBaodingChina
  2. 2.College of Food Science and TechnologyAgricultural University of HebeiBaodingChina

Personalised recommendations