Skip to main content
Log in

Thermoresponsive polymeric gel as a medium for examining interactions between dsDNA and an anticancer drug

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A piece of dry N-isopropylacrylamide polymer was soaked in phosphate buffer to obtain a hydrogel which was then employed in the examination of interactions between an anticancer drug C-1311 (5-diethylaminoethyl-amino-8-hydroxyimidazoacridinone) and dsDNA. dsDNA was introduced into the polymer at the polymerization stage. The drug was added to the buffer. Using the volume phase transition of the gel at 40 °C, the unbound drug could be determined in the solution released during the transition, which made the calculations more reliable. The interaction parameters were calculated using the McGhee and von Hippel model. It appeared that in the gel medium, the interaction between the drug and dsDNA is spatially limited, since the number of binding units of the polymer chain occupied by one drug molecule was found to be one, while it was two in the regular buffer solution.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bloemink MJ, Pérez JMJ, Heetebrij RJ, Reedijk JJ (1999) Biol Inorg Chem 4:554–567

    Article  CAS  Google Scholar 

  2. Sarkar R, Pal SK (2007) Biomacromolecules 8:3332–3339

    Article  CAS  Google Scholar 

  3. Li T-K, Bathory E, LaVoie EJ, Srinivasan AR, Olson WK, Sauers RR, Liu LF, Pilch DS (2000) Biochemistry 39:7107–7116

    Article  CAS  Google Scholar 

  4. Garcı’a-Friaza G, Fernández-Botello A, Pérez JM, Prieto MJ, Moreno V (2006) J Inorg Biochem 100:1368–1377

    Article  Google Scholar 

  5. Denny BJ, Wheelhouse RT, Stevens MFG, Tsang LLH, Slack JA (1994) Biochemistry 33:9045–9051

    Article  CAS  Google Scholar 

  6. Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T (2005) Nature 435:1059–1066

    Article  CAS  Google Scholar 

  7. Maciejewska D, Szpakowska I, Wolska I, Niemyjska M, Mascini M, Maj-Żurawska M (2006) Bioelectrochemistry 69:1–9

    Article  CAS  Google Scholar 

  8. Alberti A, Bolognese A, Guerra M, Lavecchia A, Macciantelli D, Marcaccio M, Novellino E, Paolucci F (2003) Biochemistry 42:11924–11931

    Article  CAS  Google Scholar 

  9. Aslanoglu M, Isaac CJ, Houlton A, Horrocks BR (2000) Analyst 125:1791–1798

    Article  CAS  Google Scholar 

  10. Yang IV, Ropp PA, Thorp HH (2002) Anal Chem 74:347–354

    Article  CAS  Google Scholar 

  11. Liu B, Bard AJ, Li C-Z, Kraatz H-B (2005) J Phys Chem B 109:5193–5198

    Article  CAS  Google Scholar 

  12. Wang J, Ozsoz M, Cai X, Rivas G, Shiraishi H, Grant DH, Chicharro M, Fernandes J, Paleček E (1998) Bioelectrochem Bioenerg 45:33–40

    Article  CAS  Google Scholar 

  13. Jelen F, Erdem A, Paleček E (2002) Bioelectrochemistry 55:165–167

    Article  CAS  Google Scholar 

  14. Su L, Sen D, You HZ (2006) Analyst 131:317–322

    Article  CAS  Google Scholar 

  15. Lubitz I, Borovok N, Kotlyar A (2007) Biochemistry 46:12925–12929

    Article  CAS  Google Scholar 

  16. Ataka K, Heberle J (2007) Anal Bioanal Chem 388:47–54

    Article  CAS  Google Scholar 

  17. Marx KA (2003) Biomacromolecules 4:1099–1120

    Article  CAS  Google Scholar 

  18. Roy S, Banerjee R, Sarkar M (2006) J Inorg Biochem 100:1320–1331

    Article  CAS  Google Scholar 

  19. Cohen SM, Lippard SJ (2001) Nucleic Acid Res Mol Bio 67:93–130

    Google Scholar 

  20. Krizkova S, Adam V, Petrlova J, Zitka O, Stejskal K, Zehnalek J, Sures B, Trnkova L, Beklova M, Kizek R (2007) Electroanal 19:331–338

    Article  CAS  Google Scholar 

  21. Turro NJ, Barton JK, Tomalia DA (1991) Accounts Chem Res 24:332–340

    Article  CAS  Google Scholar 

  22. Graves DE, Velea LM (2000) Curr Org Chem 4:915–929

    Article  CAS  Google Scholar 

  23. Reynisson J, Schuster GB, Howerton SB, Williams LD, Barnett RN, Cleveland CL, Landman U, Harrit N, Chaires JB (2003) J Am Chem Soc 125:2072–2083

    Article  CAS  Google Scholar 

  24. Mueller W, Crothers DM (1975) Eur J Biochem 54:267–277

    Article  CAS  Google Scholar 

  25. Haq I (2002) Arch Biochem Biophys 403:1–15

    Article  CAS  Google Scholar 

  26. Zimmer C, Wähnert U (1986) Prog Biophys Mol Biol 47:31–112

    Article  CAS  Google Scholar 

  27. Scatchard G (1949) Ann NY Acad Sci 51:660–672

    Google Scholar 

  28. McGhee JD, von Hippel PH (1974) J Mol Biol 86:469–489

    Article  CAS  Google Scholar 

  29. Nordén B, Tjerneld F (1976) Biophys Chem 4:191–198

    Article  Google Scholar 

  30. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26:6392–6396

    Article  CAS  Google Scholar 

  31. Rodger R (1992) Methods Enzymol 226:232–257

    Google Scholar 

  32. Rodger A, Blagbrough IS, Adlam G, Carpenter ML (1994) Biopolymers 34:1583–1593

    Article  CAS  Google Scholar 

  33. Kumar CV, Asuncion EH (1993) J Am Chem Soc 115:8547–8553

    Article  CAS  Google Scholar 

  34. Carter MT, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901–8911

    Article  CAS  Google Scholar 

  35. Ogawa K, Nakajima-Kambe T, Nakahara T, Kokufuta E (2002) Biomacromolecules 3:625–631

    Article  CAS  Google Scholar 

  36. Rubina AY, Pan’kov SV, Dementieva EI, Pen’kov DN, Butygin AV, Vasiliskov VA, Chudinov AV, Mikheikin AL, Mikhailovich VM, Mirzabekov AD (2004) Anal Biochem 325:92–106

    Article  CAS  Google Scholar 

  37. Starodoubstev SG, Yoshikawa K (1998) Langmuir 14:214–217

    Article  Google Scholar 

  38. Karbarz M, Gniadek M, Stojek Z (2005) Electroanal 17:1396–1400

    Article  CAS  Google Scholar 

  39. Zhang W, Ma CS, Ciszkowska M (2001) J Phys Chem B 105:3435–3440

    Article  CAS  Google Scholar 

  40. Hirokawa Y, Tanaka T (1984) J Chem Phys 81:6379–6380

    Article  Google Scholar 

  41. Karbarz M, Pulka K, Misicka A, Stojek Z (2006) Langmuir 22:7843–7847

    Article  CAS  Google Scholar 

  42. Carter TM, Rodrigues M, Bard AJ (1989) J Am Chem Soc 111:8901–8911

    Article  CAS  Google Scholar 

  43. McFadyen WD, Sotirellis N, Denny WA, Wakelin PG (1990) Biochim Biophys Acta 1048:50–58

    CAS  Google Scholar 

  44. Schindler T, Nordmeier E (1999) Polymer 40:7019–7027

    Article  CAS  Google Scholar 

  45. Mazerski J, Muchewicz K (2000) Acta Biochim Polon 47:65–78

    CAS  Google Scholar 

  46. Nowicka AM, Zabost E, Donten M, Mazerska Z, Stojek Z (2007) Anal Bioanal Chem 389:1931–1940

    Article  CAS  Google Scholar 

  47. Amsden B (1998) Macromolecules 31:8382–8395

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Support for this work by the University of Warsaw under Grant BW-179213 is gratefully acknowledged. We thank Zofia Mazerska for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna M. Nowicka or Zbigniew Stojek.

Additional information

The two authors Agata Kowalczyk and Anna M. Nowicka contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalczyk, A., Nowicka, A.M., Karbarz, M. et al. Thermoresponsive polymeric gel as a medium for examining interactions between dsDNA and an anticancer drug. Anal Bioanal Chem 392, 463–469 (2008). https://doi.org/10.1007/s00216-008-2278-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2278-3

Keywords

Navigation