Skip to main content
Log in

Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman microspectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It is generally accepted that the formation of otolith microstructures (L- and D-zones) and in particular the organic and mineral fractions vary on a daily basis. Raman microspectrometry provides a nondestructive technique that can be used to provide structural information on organic and mineral compounds. We applied it to thin otolith sections of hake in order to address the following issues: (1) the simultaneous characterization of variations in the organic and mineral fractions both in the core area and along successive otolith microstructures; (2) elucidation of significant differences between these fractions; (3) quantification of the effects of etching and staining protocols on otolith structures. The primordium appeared as a punctual area depicting higher luminescence and greater concentrations in organic compounds containing CH groups. Sulcus side showed similar composition suggesting that the contact of the otolith with the macula and its orientation in otosac occur rapidly (about 10 days). The characterization of L- and D-zones in the opaque zones indicated that both structures contained organic and aragonitic fractions with cyclic and synchronous variations. Contrary to the results obtained after EDTA etching, L-zones depicted greater concentrations in organic compounds containing CH groups, whereas D-zones appear richer in aragonite. This organic fraction seemed to be revealed by Mutvei’s staining and was affected by EDTA etching which suggests that it corresponds to the soluble fraction of organic matrix. Such results indicate that L- and D-zones differ in their respective organic constituents. Raman microspectrometry thus appears as a powerful technique to acquire quantitative information that is required for a better understanding of otolith biomineralization.

Raman microspectrometry is a powerful technique for studying otolith biomineralization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Panfili J, de Pontual H, Troadec H, Wright PJ (2002) Manual of fish sclerochronology. Ifremer-IRD Coeditions, Brest

    Google Scholar 

  2. Pannela G (1971) Science 173:1124–1127

    Article  Google Scholar 

  3. Campana SE (2005) Mar Freshwat Res 56:485–495

    Article  Google Scholar 

  4. Allemand D, Mayer-Gostan N, de Pontual H, Boeuf G, Payan P (2007) Fish otolith calcification in relation to endolymph chemistry. In: Baeuerlein E (ed) Handbook of biomineralization: biological aspects and structure formation. Wiley-VCH, Weinheim

  5. Borelli G, Mayer-Gostan N, Merle PL, De Pontual H, Boeuf G, Allemand D, Payan P (2003) Calcif Tissue Int 72:717–725

    Article  CAS  Google Scholar 

  6. Murayama E, Okuno A, Ohira T, Takagi Y, Nagasawa H (2000) Comp Biochem Physiol 126B:511–520

    CAS  Google Scholar 

  7. Murayama E, Takagi Y, Ohira T, Davis JG, Greene MI, Nagasawa H (2002) Eur J Biochem 269:688–696

    Article  CAS  Google Scholar 

  8. Söllner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T (2003) Science 302:282–286

    Article  Google Scholar 

  9. Campana SE (1999) Mar Ecol Progr Ser 188:263–297

    Article  CAS  Google Scholar 

  10. McCreadie BR, Morris MD, Chen T-C, Rao DS, Finney WF, Widjaja E, Goldstein SA (2006) Bone 39:1190–1195

    Article  CAS  Google Scholar 

  11. Payan P, De Pontual H, Edeyer A, Borelli G, Boeuf G, Mayer-Gostan N (2004) Can J Fish Aquat Sci 61:1247–1255

    Article  CAS  Google Scholar 

  12. Gauldie RW, Sharma SK, Volk E (1997) Comp Biochem Physiol 118A:753–757

    Article  CAS  Google Scholar 

  13. Melancon S, Fryer BJ, Ludsin SA, Gagnon JE, Yang ZP (2005) Can J Fish Aquat Sci 62:2609–2619

    Article  CAS  Google Scholar 

  14. Tomás J, Geffen AJ (2003) J Fish Biol 63:1383–1401

    Article  Google Scholar 

  15. Tzeng WN, Chang CW, Wang CH, Shiao JC, Iizuka Y, Yang YJ, You CF, Ložys L (2007) Mar Ecol Progr Ser 348:285–295

    Article  CAS  Google Scholar 

  16. Kaczorowska B, Hacura A, Kupka T, Wrzalik R, Talik E, Pasterny G, Matuszewska A (2003) Anal Bioanal Chem 377:1032–1037

    Article  CAS  Google Scholar 

  17. Perrin C, Smith DC (2007) C R Palevol 6:253–260

    Article  Google Scholar 

  18. Hedegaard C, Bardeau J-F, Chateigner D (2006) J Mollus Stud 72:157–162

    Article  Google Scholar 

  19. Zhang F, Cai W, Sun Z, Zhang J (2008) Anal Bioanal Chem 390:777–782

    Article  CAS  Google Scholar 

  20. Schöne BR, Dunca E, Fiebig J, Pfeiffer M (2005) Palaeogeogr, Palaeoclimatol, Palaeoecol 228:149–166

    Article  Google Scholar 

  21. Urmos J, Sharma SK, Mackenzie FT (1991) Am Miner 76:641–646

    CAS  Google Scholar 

  22. Careche M, Herrero AM, Rodriguez-Casado A, Del Mazo ML, Carmona P (1999) J Agr Food Chem 47:952–959

    Article  CAS  Google Scholar 

  23. Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S (2003) Int J Biol Macromol 32:199–204

    Article  CAS  Google Scholar 

  24. Piot O, Autran J-C, Manfait M (2000) J Cereal Sci 32:57–71

    Article  CAS  Google Scholar 

  25. Morales-Nin B (1987) Ultrastructure of the organic and inorganic constituents of the otoliths of the sea bass. In: Summerfeld RC, Hall GE (eds) The age and growth of fish. The Iowa State University Press, Ames, Iowa

    Google Scholar 

  26. Pisam M, Jammet C, Laurent D (2002) Cell Tissue Res 310:163–168

    Article  CAS  Google Scholar 

  27. Dunkelberger DG, Dean JM, Watabe N (1980) J Morphol 163:367–377

    Article  Google Scholar 

  28. Fay RR (1984) Science 225:951–954

    Article  CAS  Google Scholar 

  29. Platt C, Popper AN (1981) Fine structure and function of the ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and communication in fishes. Springer-Verlag, New York

    Google Scholar 

  30. Pisam M, Payan P, LeMoal C, Edeyer A, Boeuf G, Mayer-Gostan N (1998) Cell Tissue Res 294:261–270

    Article  Google Scholar 

  31. Alvarez P, Cotano U (2005) Fish Res 76:379–391

    Article  Google Scholar 

  32. Secor DH, Dean JM, Laban EH (1992) Otolith removal and preparation for microstructural examination. In: Stevenson DK, Campana DK (eds) Otolith microstructure examination and analysis. Can Spec Publ Fish Aquat Sci

  33. Marxen JC, Hammer M, Gehrke T, Becker W (1998) Biol Bull 194:231–240

    Article  CAS  Google Scholar 

  34. Alldredge AL, Passow U, Logan BE (1993) Deep Sea Res I 40:1131–1140

    Article  CAS  Google Scholar 

  35. Wright PJ (1991) J Fish Biol 38:625–627

    Article  Google Scholar 

  36. Borelli G, Mayer-Gostan N, De Pontual H, Boeuf G, Payan P (2001) Calcif Tissue Int 69:356–364

    Article  CAS  Google Scholar 

  37. Dauphin Y, Dufour E (2003) Comp Biochem Physiol 134A:551–561

    CAS  Google Scholar 

  38. de Pontual H, Geffen AJ (2002) Otolith microchemistry. In: Panfili J, de Pontual H, Troadec H, Wright PJ (eds) Manual of fish sclerochronology. Coedition Ifremer-IRD, Brest

    Google Scholar 

  39. de Pontual H, Lagardère F, Amara R, Bohn M, Ogor A (2003) J Sea Res 50:199–210

    Article  Google Scholar 

  40. Tomás J, Geffen AJ, Millner RS, Pineiro CG, Tserpes G (2006) Mar Biol 148:1399–1413

    Article  Google Scholar 

  41. Borelli G, Guibbolini ME, Mayer-Gostan N, Priouzeau F, de Pontual H, Allemand D, Puverel S, Tambutte E, Payan P (2003) J Exp Biol 206:2685–2692

    Article  CAS  Google Scholar 

  42. Edeyer A, de Pontual H, Payan P, Troadec H, Sévère A, Mayer-Gostan N (2000) Mar Ecol Progr Ser 192:287–294

    Article  Google Scholar 

  43. Mugiya Y (1987) Fish Bull 85:395–401

    Google Scholar 

  44. Payan P, de Pontual H, Boeuf G, Mayer-Gostan N (2004) C R Palevol 3:535–547

    Article  Google Scholar 

  45. Briget Mary M, Ramakrishnan V (2005) Spectrochim Acta A Mol Biomol Spectrosc 62:164–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Jolivet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolivet, A., Bardeau, JF., Fablet, R. et al. Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman microspectrometry. Anal Bioanal Chem 392, 551–560 (2008). https://doi.org/10.1007/s00216-008-2273-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2273-8

Keywords

Navigation