Skip to main content

Advertisement

Log in

New trends in bioanalytical tools for the detection of genetically modified organisms: an update

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Despite the controversies surrounding genetically modified organisms (GMOs), the production of GM crops is increasing, especially in developing countries. Thanks to new technologies involving genetic engineering and unprecedented access to genomic resources, the next decade will certainly see exponential growth in GMO production. Indeed, EU regulations based on the precautionary principle require any food containing more than 0.9% GM content to be labeled as such. The implementation of these regulations necessitates sampling protocols, the availability of certified reference materials and analytical methodologies that allow the accurate determination of the content of GMOs. In order to qualify for the validation process, a method should fulfil some criteria, defined as “acceptance criteria” by the European Network of GMO Laboratories (ENGL). Several methods have recently been developed for GMO detection and quantitation, mostly based on polymerase chain reaction (PCR) technology. PCR (including its different formats, e.g., double competitive PCR and real-time PCR) remains the technique of choice, thanks to its ability to detect even small amounts of transgenes in raw materials and processed foods. Other approaches relying on DNA detection are based on quartz crystal microbalance piezoelectric biosensors, dry reagent dipstick-type sensors and surface plasmon resonance sensors. The application of visible/near-infrared (vis/NIR) spectroscopy or mass spectrometry combined with chemometrics techniques has also been envisaged as a powerful GMO detection tool. Furthermore, in order to cope with the multiplicity of GMOs released onto the market, the new challenge is the development of routine detection systems for the simultaneous detection of numerous GMOs, including unknown GMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dlugosch KM, Whitton J (2008) Mol Ecol 17:1167–1169

    Article  Google Scholar 

  2. Kleter GA, Prandini A, Filippi L, Marvin HJ (2008) Food Chem Toxicol DOI 10.1016/j.fct.2007.12.022

  3. McHughen A, Smyth S (2008) Plant Biotechnol J 6:2–12

    Google Scholar 

  4. Rodríguez-Lázaro D, Lombard B, Smith H, Rzezutka A, D’Agostino M, Helmuth R, Schroeter A, Malorny B, Miko A, Guerra B, Davison J, Kobilinsky A, Hernández M, Bertheau Y, Cook N (2007) Trends Food Sci Tech 18:306–319

    Article  Google Scholar 

  5. Holst-Jensen A, Rønning SB, Løvseth A, Berdal KG (2003) Anal Bioanal Chem 375:985–993

    CAS  Google Scholar 

  6. Ahmed FE (2002) Trends Biotechnol 20:215–223

    Article  CAS  Google Scholar 

  7. Elenis DS, Kalogianni DP, Glynou K, Ioannou PC, Christopoulos TK (2008) Anal Bioanal Chem DOI 10.1007/s00216-008-1868-4

  8. Moreano F, Busch U, Engel KH (2005) J Agric Food Chem 53:9971–9979

    Article  CAS  Google Scholar 

  9. Engel KH, Moreano F, Ehlert A, Busch U (2006) Trends Food Sci Tech 17:490–497

    Article  CAS  Google Scholar 

  10. Rexroad CE Jr, Green RD, Wall RJ (2007) Theriogenol 68:S3–S8

    Article  CAS  Google Scholar 

  11. Wheeler MB (2007) Trends Biotechnol 25:204–210

    Article  CAS  Google Scholar 

  12. Devlin RH, Sundström LF, Muir WM (2006) Trends Biotechnol 24:89–97

    Article  CAS  Google Scholar 

  13. Miller HI (2008) Nat Biotechnol 26:159–160

    Article  CAS  Google Scholar 

  14. Frey J (2007) Vaccine 25:5598–5605

    Article  CAS  Google Scholar 

  15. Whitaker TB, Trucksess MW, Giesbrecht FG, Slate AB, Thomas FS (2004) J AOAC Int 87:950–960

    CAS  Google Scholar 

  16. Whitaker TB, Freese L, Giesbrecht FG, Slate AB (2001) J AOAC Int 84:1941–1946

    CAS  Google Scholar 

  17. Emslie KR, Whaites L, Griffiths KR, Murby EJ (2007) J Agric Food Chem 55:4414–4421

    Article  CAS  Google Scholar 

  18. Loftus R (2005) Rev Sci Tech 24:231–242

    CAS  Google Scholar 

  19. Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, Marvin HJ, Schimmel H, Rentsch J, van Rie JP, Zagon J (2004) Food Chem Toxicol 42:1157–1180

    Article  CAS  Google Scholar 

  20. Garcia-Cañas V, Cifuentes A, Gonzàlez R (2004) Anal Chem 76:2306–2313

    Article  Google Scholar 

  21. Sánchez L, González R, Crego AL, Cifuentes A (2007) J Sep Sci 30:579–585

    Article  Google Scholar 

  22. Buh Gasparic M, Cankar K, Zel J, Gruden K (2008) BMC Biotechnol 8:26

    Article  Google Scholar 

  23. Mavropoulou AK, Koraki T, Ioannou PC, Christopoulos TK (2005) Anal Chem 77:4785–4791

    Article  CAS  Google Scholar 

  24. Kalogianni DP, Elenis DS, Christopoulos TK, Ioannou PC (2007) Anal Chem 79:6655–6661

    Article  CAS  Google Scholar 

  25. Zhang M, Gao X, Yu Y, Ao J, Qin J, Yao Y, Li Q (2007) Food Control 18:1277–1281

    Article  CAS  Google Scholar 

  26. Cankar K, Štebih D, Dreo T, Žel J, Gruden K (2006) BMC Biotechnol 6:37

    Article  Google Scholar 

  27. Manera MG, Spadavecchia J, Leone A, Quaranta F, Rella R, Dell’Atti D, Minunni M, Mascini M, Siciliano P (2007) Sens Actuators B DOI 10.1016/j.snb.2007.02.060

  28. Feriotto G, Borgatti M, Mischiati C, Bianchi N, Gambari R (2002) J Agric Food Chem 50:955–962

    Article  CAS  Google Scholar 

  29. Gambari R, Feriotto G (2006) J AOAC Int 89:893–897

    CAS  Google Scholar 

  30. Kalogianni DP, Koraki T, Christopoulos TK, Ioannou PC (2006) Sens Actuators B 21:1069–1076

    Google Scholar 

  31. Passamano M, Pighini M (2006) Sens Actuators B 118:177–181

    Google Scholar 

  32. Mannelli I, Minunni M, Tombelli S, Mascini M (2003) Biosens Bioelectron 18:129–140

    Article  CAS  Google Scholar 

  33. Lucarelli F, Marrazza G, Mascini M (2005) Biosens Bioelectron 20:2001–2009

    Article  CAS  Google Scholar 

  34. Sun W, Zhong J, Zhang B, Jiao K (2007) Anal Bioanal Chem 389:2179–2184

    Article  CAS  Google Scholar 

  35. Grothaus GD, Bandla M, Currier T, Giroux R, Jenkins GR, Lipp M, Shan G, Stave JW, Pantella V (2006) J AOAC Int 89:913–928

    CAS  Google Scholar 

  36. Fantozzi A, Ermolli M, Marini M, Scotti D, Balla B, Querci M, Langrell SR, Van den Eede G (2007) J Agric Food Chem 55:1071–1076

    Article  CAS  Google Scholar 

  37. Roda A, Mirasoli M, Guardigli M, Michelini E, Simoni P, Magliulo M (2006) Anal Bioanal Chem 384:1269–1275

    Article  CAS  Google Scholar 

  38. Paul V, Steinke K, Meyer HH (2008) Anal Chim Acta 607:106–113

    Article  CAS  Google Scholar 

  39. Shim YY, Shin WS, Moon GS, Kim KH (2007) J Microbiol Biotechnol 17:681–684

    CAS  Google Scholar 

  40. Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) J Agric Food Chem 53:9713–9721

    Article  CAS  Google Scholar 

  41. Xu J, Zhu S, Miao H, Huang W, Qiu M, Huang Y, Fu X, Li Y (2007) J Agric Food Chem 55:5575–5579

    Article  CAS  Google Scholar 

  42. Hernández M, Rodríguez-Lázaro D, Zhang D, Esteve T, Pla M, Prat S (2005) J Agric Food Chem 53:3333–3337

    Article  Google Scholar 

  43. Nadal A, Coll A, La Paz JL, Esteve T, Pla M (2006) Electrophoresis 27:3879–3888

    Article  CAS  Google Scholar 

  44. Hernández M, Rodríguez-Lázaro D, Zhang D, Esteve T, Pla M, Prat S (2005) J Agric Food Chem 53:3333–3337

    Article  Google Scholar 

  45. Pan L, Zhang S, Yang L, Broll H, Tian F, Zhang D (2007) J AOAC 90:1639–1646

    CAS  Google Scholar 

  46. Zhang D, Corlet A, Fouilloux S (2007) Transgenic Res DOI 10.1007/s11248-007-9114-y

  47. Singh CK, Ojha A, Bhatanagar RK, Kachru DN (2008) Anal Bioanal Chem 390:377–387

    Article  CAS  Google Scholar 

  48. Leimanis S, Hernández M, Fernández S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomènech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139

    Article  CAS  Google Scholar 

  49. Rønning SB, Berdal KG, Andersen CB, Holst-Jensen A (2006) J Agric Food Chem 54:682–687

    Article  Google Scholar 

  50. Toyota A, Akiyama H, Sugimura M, Watanabe T, Kikuchi H, Kanamori H, Hino A, Esaka M, Maitani T (2006) Biosci Biotechnol Biochem 70:821–827

    Article  CAS  Google Scholar 

  51. Charels D, Broeders S, Corbisier P, Trapmann S, Schimmel H, Emons H (2007) J Agric Food Chem 55:3268–3274

    Article  CAS  Google Scholar 

  52. Chaouachi M, El Malki R, Berard A, Romaniuk M, Laval V, Brunel D, Bertheau Y (2008) J Agric Food Chem DOI 10.1021/jf073313n

  53. Clapp J (2008) Ecol Econ DOI 10.1016/j.ecolecon.2007.09.006

  54. Nesvold H, Kristoffersen AB, Holst-Jensen A, Berdal KG (2005) Bioinformatics 21:1917–1926

    Article  CAS  Google Scholar 

  55. Tengs T, Kristoffersen AB, Berdal KG, Thorstensen T, Butenko MA, Nesvold H, Holst-Jensen A (2007) BMC Biotechnol 7:91

    Article  Google Scholar 

  56. Akiyama H, Sasaki N, Sakata K, Ohmori K, Toyota A, Kikuchi Y, Watanabe T, Furui S, Kitta K, Maitani T (2007) J Agric Food Chem 55:5942–5947

    Article  CAS  Google Scholar 

  57. Akiyama H, Sakata K, Kondo K, Tanaka A, Liu MS, Oguchi T, Furui S, Kitta K, Hino A, Teshima R (2008) J Agric Food Chem DOI 10.1021/jf0727239

  58. Deisingh AK, Badrie N (2005) Food Res Int 38:639–649

    Article  CAS  Google Scholar 

  59. Kumar KS, Kang SH (2007) Electrophoresis 28:4247–4254

    Article  CAS  Google Scholar 

  60. Chen J, Arnold MA, Small GW (2004) Anal Chem 76:5405–5413

    Article  CAS  Google Scholar 

  61. Trygg J, Holmes E, Lundstedt T (2007) J Proteome Res 6:469–479

    Article  CAS  Google Scholar 

  62. Roussel SA, Hardy CL, Hurburgh CR, Rippke GR (2001) Appl Spectrosc 55:1425–1430

    Article  CAS  Google Scholar 

  63. Xie L, Ying Y, Ying T (2007) J Agric Food Chem 55:4645–4650

    Article  CAS  Google Scholar 

  64. Rodríguez-Nogales JM, Cifuentes A, García MC, Marina ML (2007) J Agric Food Chem 55:3835–3842

    Article  Google Scholar 

  65. Jastrzebska A, Brudka B, Szymanski T, Szlyk E (2003) Food Chem 83:463–467

    Article  CAS  Google Scholar 

  66. Holmes E, Tang H, Wang Y, Seger C (2006) Planta Med 72:771–785

    Article  CAS  Google Scholar 

  67. Idle JR, Gonzalez FJ (2007) Cell Metab 6:348–351

    Article  CAS  Google Scholar 

  68. Careri M, Elviri L, Mangia A, Zagnoni I, Agrimonti C, Visioli G, Marmiroli N (2003) Rapid Commun Mass Spectrom 17:479–483

    Article  CAS  Google Scholar 

  69. Ocaña MF, Fraser PD, Patel RK, Halket JM, Bramley PM (2007) Rapid Commun Mass Spectrom 21:319–328

    Article  Google Scholar 

  70. García-Cañas V, González R, Cifuentes A (2004) Electrophoresis 25:2219–26

    Google Scholar 

  71. Obeid PJ, Christopoulos TK, Ioannou PC (2004) Electrophoresis 25:922–30

    Google Scholar 

  72. Glynou K, Ioannou PC, Christopoulos TK (2004) Anal Bioanal Chem 378:1748–53

    Google Scholar 

  73. Xu J, Miao H, Wu H, Huang W, Tang R, Qiu M, Wen J, Zhu S, Li Y (2006) Biosens Bioelectron 22:71–7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelini, E., Simoni, P., Cevenini, L. et al. New trends in bioanalytical tools for the detection of genetically modified organisms: an update. Anal Bioanal Chem 392, 355–367 (2008). https://doi.org/10.1007/s00216-008-2193-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2193-7

Keywords

Navigation