Abstract
Massively parallel and individual DNA manipulation for analysis has been demonstrated by designing a fully self-assembled molecular system using motor proteins. DNA molecules were immobilized by trapping in a polyacrylamide gel replica, and were digested by a restriction enzyme, XhoI, for DNA analysis. One end of the λDNA was modified with biotin and the other end was modified with digoxin molecules by fragment labeling and ligation methods. The digoxin-functionalized end was immobilized on a glass surface coated with anti-digoxigenin antibody. The biotinylated end was freely suspended and experienced Brownian motion in a buffer solution. The free end was attached to a biotinylated microtubule via avidin–biotin biding and the DNA was stretched by a kinesin-based gliding assay. A stretched DNA molecule was fixed between the gel and coverslip to observe the cleavage of the DNA by the enzyme, which was supplied through the gel network structure. This simple process flow from DNA manipulation to analysis offers a new method of performing molecular surgery at the single-molecule scale.

DNA molecule manipulation by motor proteins for analysis at the single-molecule level
This is a preview of subscription content, access via your institution.







References
- 1.
Manz A, Graber N, Widmer HM (1990) Sens Actuators B1:244–248
- 2.
Yokokawa R, Yumi Y, Takeuchi S, Kon T, Fujita H (2006) Nanotechnology 17:289–294
- 3.
Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Nature 386:299–302
- 4.
Arata H, Noji H, Fujita H (2006) Appl Phys Lett 88:083902
- 5.
Washizu M, Kurosawa O (1990) IEEE Trans Ind Applicat 26:1165–1172
- 6.
Hoyer C, Monajembashi S, Greulich K (1996) J Biotechnol 52:65–73
- 7.
Washizu M, Kurosawa O, Arai I, Suzuki S, Shimamoto N (1995) IEEE Trans Ind Applicat 31:447–456
- 8.
Suzuki S, Yamanashi T, Tazawa S, Kurosawa O, Washizu M (1998) IEEE Trans Ind Applicat 34:75–83
- 9.
Oana H, Ueda M, Washizu M (1999) Biochem Biophys Res Commun 265:140–143
- 10.
Kabata H, Okada W, Washizu M (2000) Jpn J Appl Phys 1 39:7164–7171
- 11.
Yamamoto T, Kurosawa O, Kabata H, Shimamoto N, Washizu M (2000) IEEE Trans Ind Appl 36:1010–1017
- 12.
Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Noji H (2007) Versatile acrylamide-based microchambers for single molecular assays and analysis. In: 11th Int Conf on Miniaturized Systems for Chemistry and Life Sciences (mTAS2007), vol 1, Paris, France, 2007, 7–11 Oct 2007, pp 649–651
- 13.
Wenner JR, Williams MC, Rouzina I, Bloomfield VA (2002) Biophys J 82:3160–3169
- 14.
Smith SB, Finzi L, Bustamante C (1992) Science 258:1122–1126
- 15.
Hashiguchi G, Goda T, Hosogi M, Hirano K, Kaji N, Baba Y, Kakushima K, Fujita H (2003) Anal Chem 75:4347–4350
- 16.
Krishnan M, Monch I, Schwille P (2007) Nano Lett 7:1270–1275
- 17.
Dinu CZ, Opitz J, Pompe W, Howard J, Mertig M, Diez S (2006) Small (Weinheim an der Bergstrasse, Germany) 2:1090–1098
- 18.
Diez S, Reuther C, Dinu C, Seidel R, Mertig M, Pompe W, Howard J (2003) Nano Lett 3:1251–1254
- 19.
Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Arata H, Fujita H, Noji H (2008) Biomed Microdev (published online) http://www.springerlink.com/content/hm06334xn2536682/?p=a3aeb6ac7f994acbadfb98a1c8012305&pi=0
- 20.
Hiratsuka Y, Tada T, Oiwa K, Kanayama T, Uyeda TQ (2001) Biophys J 81:1555–1561
- 21.
Hess H, Clemmens J, Qin D, Howard J, Vogel V (2001) Nano Lett 1:235–239
- 22.
Lin C-T, Kao M-T, Kurabayashi K, Meyhofer E (2006) Small (Weinheim an der Bergstrasse, Germany) 2:281–287
- 23.
Clemmens J, Hess H, Doot R, Matzke CM, Bachand GD, Vogel V (2004) Lab Chip 4:83–86
- 24.
Hess H, Matzke CM, Doot RK, Clemmens J, Bachand GD, Bunker BC, Vogel V (2003) Nano Lett 3:1651–1655
- 25.
van den Heuvel MG, de Graaff MP, Dekker C (2006) Science 312:910–914
- 26.
Tarhan MC, Yokokawa R, Morin F, Takeuchi S, Kon T, Fujita H (2006) In: 19th IEEE Int Conf on Micro Electro Mechanical Systems, Istanbul, Turkey, 22–26 Jan 2006, pp 526–529
- 27.
Hyman A, Drechsel D, Kellogg D, Salser S, Sawin K, Steffen P, Wordeman L, Mitchison T (1991) Methods Enzymol 196:478–485
- 28.
Williams RC Jr, Lee JC (1982) Methods Enzymol 85(Pt B):376–485
- 29.
Doyle PS, Ladoux B, Viovy JL (2000) Phys Rev Lett 84:4769–4772
- 30.
Howard J, Hudspeth AJ, Vale R (1989) Nature 342:154–159
- 31.
Bustamante C, Bryant Z, Smith SB (2003) Nature 421:423–427
- 32.
Turner D, Chang C, Fang K, Cuomo P, Murphy D (1996) Anal Biochem 242:20–25
- 33.
Yokokawa R, Takeuchi S, Kon T, Nishiura M, Sutoh K, Fujita H (2004) Nano Lett 4:2265–2270
Acknowledgements
This work was supported by the Ministry of Education, Science, Sports and Culture, with a Grant-in-Aid for Young Scientists (B), 19710111, 2007, and the Japan Securities Foundation, 2005–2007. The authors thank Prof. Hiroyuki Noji and Dr. Liza Lam of The Institute of Scientific and Industrial Research (ISIR), Osaka University, Japan for technical help with the DNA immobilization for the enzymatic reaction. The authors would also like to acknowledge Mr. Mauricio Cordero of the Institute of Industrial Science, The University of Tokyo for his critical reading of this manuscript.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yokokawa, R., Miwa, J., Tarhan, M.C. et al. DNA molecule manipulation by motor proteins for analysis at the single-molecule level. Anal Bioanal Chem 391, 2735 (2008). https://doi.org/10.1007/s00216-008-2125-6
Received:
Revised:
Accepted:
Published:
Keywords
- DNA
- Molecular surgery
- Motor protein
- Nanomanipulation