Skip to main content
Log in

Electrochemical behavior and differential pulse voltammetric determination of paracetamol at a carbon ionic liquid electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of paracetamol in 0.1 M acetate buffer solution (pH 4.6) was investigated at a traditional carbon paste electrode (TCPE) and a carbon ionic liquid electrode (CILE) fabricated by replacing nonconductive organic binders with a conductive hydrophobic room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6). The results showed that the CILE exhibited better reversibility for the electrochemical redox of paracetamol. The oxidation potential of paracetamol at the CILE is +0.462 V, which is approximately 232 mV lower than that at the TCPE; the oxidation peak current response is nine times higher than that at the TCPE. The differential pulse voltammetric determination of paracetamol at the CILE was established based on this behavior. After optimizing several important parameters controlling the performance of paracetamol at the CILE, the oxidation peak current versus paracetamol concentration at the CILE showed linearity in the range from 1.0 μM to 2.0 mM (R 2 = 0.9992) with a detection limit of 0.3 μM (S/N = 3). The method has been applied to the determination of paracetamol in tablets and urine samples and the average recovery of paracetamol was 98.5% and 99.3%, respectively. The proposed CILE showed good sensitivity and reproducible response without influence of interferents commonly existing in pharmaceutical and urine samples.

CV curves of paracetamol illustrate the enhanced electrochemical behavior of paracetamol at the CILE (b), which forms the basis for the differential pulse voltammetric determination of paracetamol

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang S, Xie F, Hu R (2007) Sens Actuators B 123:495–500

    Article  Google Scholar 

  2. Bosch ME, Sánchez AJR, Rojas FS, Ojeda CB (2006) J Pharm Biomed Anal 42:291–321

    Article  CAS  Google Scholar 

  3. Boopathi M, Won MS, Shim YB (2004) Anal Chim Acta 512:191–197

    Article  CAS  Google Scholar 

  4. Carvalho RM, Freire RS, Rath S, Kubota LT (2004) J Pharm Biomed Anal 34:871–878

    Article  Google Scholar 

  5. Trojanowicz M (2000) Flow injection analysis: instrumentation and applications. World Scientific, Singapore, p 481

    Google Scholar 

  6. Filik H, Tavman A (2007) J Anal Chem 62:530–535

    Article  CAS  Google Scholar 

  7. Zarei AR, Afkhami A, Sarlak N (2005) J AOAC Int 88:1695–1701

    Google Scholar 

  8. Satinsky D, Neto I, Solich P, Sklenarova H, Conceicao M, Montenegro BSM (2004) J Sep Sci 27:529–536

    Article  CAS  Google Scholar 

  9. Yang B, Mo J, Yang X, Wang L (2000) J Instrum Anal 19:13–15

    Google Scholar 

  10. Hilton MJ, Thomas KV (2003) J Chromatogr A 1015:129–141

    Article  CAS  Google Scholar 

  11. Burgot G, Auffret F, Burgot JL (1997) Anal Chim Acta 343:125–141

    Article  CAS  Google Scholar 

  12. Zen JM, Ting YS (1997) Anal Chim Acta 342:175–180

    Article  CAS  Google Scholar 

  13. Gorton L (1995) Electroanalysis 7:23–25

    Article  CAS  Google Scholar 

  14. Campanella L, Tomassetti M (1992) Electrochem 8:229–238

    CAS  Google Scholar 

  15. Maciej G, Andrzej L, Izabela S (2006) Electrochim Acta 51:5567–5580

    Article  Google Scholar 

  16. Rika H, Takayuki H, Tetsuya T, Yasuhiko I (2000) J Fluorine Chem 105:221–227

    Article  Google Scholar 

  17. Nishi N, Imakura S, Kakiuchi T (2006) Anal Chem 78:2726

    Article  CAS  Google Scholar 

  18. Lang CM, Kim K, Guerra L, Kohl PA (2005) J Phys Chem B 109:19454–19462

    Article  CAS  Google Scholar 

  19. Brooks CA, Doherty AP (2004) Electrochem Commun 6:867–871

    Article  CAS  Google Scholar 

  20. Zheng J, Zhang Y, Yang P (2007) Talanta 73:920–925

    Article  CAS  Google Scholar 

  21. Chen H, Wang Y, Liu Y, Wang Y, Qi L, Dong S (2007) Electrochem Commun 9:469–474

    Article  CAS  Google Scholar 

  22. Shan D, Wang S, Xue H, Cosnier S (2007) Electrochem Commun 9:529–534

    Google Scholar 

  23. Heitzman H, Young BA, Rausch DJ, Rickert P, Stepinski DC, Dietz ML (2006) Talanta 69:527–531

    Article  CAS  Google Scholar 

  24. Maleki N, Safavi A, Tajabadi F (2006) Anal Chem 78:3820–3826

    Article  CAS  Google Scholar 

  25. Liu H, He P, Li Z, Sun C, Shi L, Liu Y, Zhu G, Li J (2005) Electrochem Commun 7:1357–1363

    Article  CAS  Google Scholar 

  26. Reis APD, Tarley CRT, Maniasso N, Kubota LT (2005) Talanta 67:829–835

    Google Scholar 

  27. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  28. Goyal RN, Singh SP (2006) Electrochim Acta 51:3008–3012

    Article  CAS  Google Scholar 

  29. Fatibello-Filho O, Lupetti KO, Vieira IC (2001) Talanta 55:685–692

    Article  CAS  Google Scholar 

  30. Duan L, Xie F, Zhou F, Wang S (2007) Anal Lett 40:2653–2663

    Article  CAS  Google Scholar 

  31. Sun D, Zhang H (2007) Microchim Acta 158:131–136

    Article  CAS  Google Scholar 

  32. Li M, Jing L (2007) Electrochim Acta 17:3250–3257

    Article  Google Scholar 

  33. Silva MLS, Garcia MBQ, Lima JLFC, Barrado E (2006) Anal Chim Acta 573–574:383–390

    Article  Google Scholar 

  34. Tungkananuruk K, Tungkananuruk N, Burns DT (2005) KMITL Sci Tech J 5:547–551

    Google Scholar 

  35. Özcan L, Şahin Y (2007) Sens Actuators B 127:362–369

    Article  Google Scholar 

  36. Li L, Cheng H, Chen Q, Kong H, Wu J (2006) J Instrum Anal 25:38–40

    Google Scholar 

  37. Goyal RN, Gupta VK (2005) Electrochem Commun 7:803–807

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20675062) and the Research Foundation for the Doctoral Program of Higher Education (No. 20060697013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ShangGuan, X., Zhang, H. & Zheng, J. Electrochemical behavior and differential pulse voltammetric determination of paracetamol at a carbon ionic liquid electrode. Anal Bioanal Chem 391, 1049–1055 (2008). https://doi.org/10.1007/s00216-008-2096-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2096-7

Keywords

Navigation