Skip to main content
Log in

Metabolic profiling of major vitamin D metabolites using Diels–Alder derivatization and ultra-performance liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biologically active forms of vitamin D are important analytical targets in both research and clinical practice. The current technology is such that each of the vitamin D metabolites is usually analyzed by individual assay. However, current LC-MS technologies allow the simultaneous metabolic profiling of entire biochemical pathways. The impediment to the metabolic profiling of vitamin D metabolites is the low level of 1α,25-dihydroxyvitamin D3 in human serum (15–60 pg/mL). Here, we demonstrate that liquid–liquid or solid-phase extraction of vitamin D metabolites in combination with Diels–Alder derivatization with the commercially available reagent 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) followed by ultra-performance liquid chromatography (UPLC)–electrospray/tandem mass spectrometry analysis provides rapid and simultaneous quantification of 1α,25-dihydroxyvitamin D3, 1α,25-dihydroxyvitamin D2, 24R,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in 0.5 mL human serum at a lower limit of quantification of 25 pg/mL. Precision ranged from 1.6–4.8 % and 5–16 % for 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3, respectively, using solid-phase extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–b
Fig. 3a–b
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–c
Fig. 8
Fig. 9a–c
Fig. 10a–c

Similar content being viewed by others

References

  1. Fiehn O (2002) Plant Mol Biol 48(1–2):155–171

    Article  CAS  Google Scholar 

  2. Dettmer K, Aronov PA, Hammock BD (2007) Mass Spectrom Rev 26(1):51–78

    Article  CAS  Google Scholar 

  3. Zerwekh JE (2004) Ann Clin Biochem 41(4):272–281

    Article  CAS  Google Scholar 

  4. Maunsell Z, Wright DJ, Rainbow SJ (2005) Clin Chem 51(9):1683–1690

    Article  CAS  Google Scholar 

  5. Vogeser M, Kyriatsoulis A, Huber E, Kobold U (2004) Clin Chem 50(8):1415–1417

    Article  CAS  Google Scholar 

  6. Higashi T, Awada D, Shimada K (2001) Biol Pharm Bull 24(7):738–743

    Article  CAS  Google Scholar 

  7. Bouillon R, Okamura WH, Norman AW (1995) Endocr Rev 16(2):200–257

    Article  CAS  Google Scholar 

  8. Prosser DE, Jones G (2004) Trends Biochem Sci 29(12):664–673

    Article  CAS  Google Scholar 

  9. Armas LA, Hollis BW, Heaney RP (2004) J Clin Endocrinol Metab 89(11):5387–5391

    Article  CAS  Google Scholar 

  10. Houghton LA, Vieth R (2006) Am J Clin Nutr 84(4):694–697

    CAS  Google Scholar 

  11. Avioli LV, Lee SW, McDonald JE, Lund J, DeLuca HF (1967) J Clin Invest 46(6):983–992

    CAS  Google Scholar 

  12. Norman AW (2006) Endocrinol 147(12):5542–5548

    Article  CAS  Google Scholar 

  13. Boyan BD, Sylvia VL, Dean DD, Del Toro F, Schwartz Z (2002) Crit Rev Oral Biol Med 13(2):143–154

    Article  CAS  Google Scholar 

  14. Schwartz Z, Ehland H, Sylvia VL, Larsson D, Hardin RR, Bingham V, Lopez D, Dean DD, Boyan BD (2002) Endocrinol 143(7):2775–2786

    Article  CAS  Google Scholar 

  15. Boyan BD, Sylvia VL, Dean DD, Schwartz Z (2001) Steroids 66(3–5):363–374

    Article  CAS  Google Scholar 

  16. Kissmeyer AM, Sonne K (2001) J Chromatogr A 935(1–2):93–103

    Article  CAS  Google Scholar 

  17. Higashi T, Awada D, Shimada K (2001) Biomed Chromatogr 15(2):133–140

    Article  CAS  Google Scholar 

  18. Higashi T, Yamauchi A, Shimada K (2003) Anal Sci 19(6):941–943

    Article  CAS  Google Scholar 

  19. Higashi T, Homma S, Iwata H, Shimada K (2002) J Pharm Biomed Anal 29(5):947–955

    Article  CAS  Google Scholar 

  20. Wilson SR, Tulchinsky ML, Wu Y (1993) Bioorg Med Chem Lett 3(9):1805–1808

    Article  CAS  Google Scholar 

  21. Aronov PA, Dettmer K, Christiansen JA, Cornel AJ, Hammock BD (2005) J Agric Food Chem 53(9):3306–3312

    Article  CAS  Google Scholar 

  22. Murao N, Ishigai M, Sekiguchi N, Takahashi T, Aso Y (2005) Anal Biochem 346(1):158–166

    Article  CAS  Google Scholar 

  23. Anon (2001) J Adolesc Health 29(3, Suppl 1):5–6

  24. Rogers AS, Futterman DK, Moscicki AB, Wilson CM, Ellenberg J, Vermund SH (1998) J Adolesc Health 22(4):300–311

    Article  CAS  Google Scholar 

  25. Hollis BW (2005) Detection of vitamin D and its major metabolites. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D. Elsevier, Amsterdam

    Google Scholar 

  26. Carter GD, Carter CR, Gunter E, Jones J, Jones G, Makin HL, Sufi S (2004) J Steroid Biochem Mol Biol 89–90(1–5):467–471

    Article  CAS  Google Scholar 

  27. Giorgianni F, Cappiello A, Beranova-Giorgianni S, Palma P, Trufelli H, Desiderio DM (2004) Anal Chem 76(23):7028–7038

    Article  CAS  Google Scholar 

  28. Astecker N, Reddy GS, Herzig G, Vorisek G, Schuster I (2000) Mol Cell Endocrinol 170(1–2):91–101

    Article  CAS  Google Scholar 

  29. Singh RJ, Taylor RL, Reddy GS, Grebe SK (2006) J Clin Endocrinol Metab 91(8):3055–3061

    Article  CAS  Google Scholar 

  30. Holick MF (2003) J Cell Biochem 88(2):296–307

    Article  CAS  Google Scholar 

  31. Stephensen CB, Marquis GS, Kruzich LA, Douglas SD, Aldrovandi GM, Wilson CM (2006) Am J Clin Nutr 83(5):1135–1141

    CAS  Google Scholar 

  32. Madeddu G, Spanu A, Solinas P, Calia GM, Lovigu C, Chessa F, Mannazzu M, Falchi A, Mura MS, Madeddu G (2004) Q J Nucl Med Mol Imaging 48(1):39–48

    Google Scholar 

  33. Cozzolino M, Vidal M, Arcidiacono MV, Tebas P, Yarasheski KE, Dusso AS (2003) Aids 17(4):513–520

    Article  CAS  Google Scholar 

  34. Delahunt JW, Romeril KE (1994) J Acquir Immune Defic Syndr 7(8):871–872

    CAS  Google Scholar 

  35. Ahmed B, Jaspan JB (1993) Am J Med Sci 306(5):313–316

    Article  CAS  Google Scholar 

  36. Adams JS, Fernandez M, Gacad MA, Gill PS, Endres DB, Rasheed S, Singer FR (1989) Blood 73(1):235–239

    CAS  Google Scholar 

  37. Aly ES, Baig M, Khanna D, Baumann MA (1999) Int J Clin Pract 53(3):227–228

    CAS  Google Scholar 

  38. Freeman NJ, Holik D (2003) J Clin Oncol 21(1):170–172

    Google Scholar 

  39. Barbour GL, Coburn JW, Slatopolsky E, Norman AW, Horst RL (1981) N Engl J Med 305(8):440–443

    CAS  Google Scholar 

  40. Barnes PF, Modlin RL, Bikle DD, Adams JS (1989) J Clin Invest 83(5):1527–1532

    Article  CAS  Google Scholar 

  41. Akeno N, Saikatsu S, Kawane T, Horiuchi N (1997) Endocrinol 138(6):2233–2240

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank John Newman who provided the UPLC for the initial method development experiments. We thank Theresa Pedersen and Katrin Georgi for discussion of the extraction procedure, Mike Eskander for help with preparation of standards and MS optimization, Alina Wettstein for help with preparation of REACH samples and Leslie Woodhouse and Manuel Tengonciang for 25(OH)D RIA analysis. P.A.A. was supported by NIEHS Advanced Training in Environmental Toxicology Grant T32 ES007059. L.M.H. was supported by NIH Grant P60 MD00222-01. C.B.S. was supported by USDA-ARS Project 5306-51530-006-00D. K.D. was supported in part by BayGene. This research was supported in part by California Dairy Research Foundation Grant 07 HAB-01-NH, Bristol-Meyers/Squibb Freedom to Discover Award, NIEHS Grant R37 ES02710, NIEHS Superfund Basic Research Program P42 ES004699, NIEHS Center grant P30 ES05707, and NIEHS Center for Children’s Environmental Health & Disease Prevention Grant P01 ES11269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Hammock.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronov, P.A., Hall, L.M., Dettmer, K. et al. Metabolic profiling of major vitamin D metabolites using Diels–Alder derivatization and ultra-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 391, 1917–1930 (2008). https://doi.org/10.1007/s00216-008-2095-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2095-8

Keywords

Navigation