Skip to main content
Log in

Study of the kinetics of the transport of Cu(II), Cd(II) and Ni(II) ions through a liquid membrane

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The coupled transport of Cu(II), Cd(II) and Ni(II) ions through a bulk liquid membrane (BLM) containing pyridine-2-acetaldehyde benzoylhydrazone (2-APBH) as carrier dissolved in toluene has been studied. Once the optimal conditions of extraction of each metal were established, a comparative study of the transport kinetics for these metals was performed by means of a kinetic model involving two consecutive irreversible first-order reactions. The kinetic parameters (apparent rate constants of the metal extraction and re-extraction reactions (k 1, k 2), the maximum reduced concentration of the metal in the liquid membrane (\(R^{{\max }}_{o} \)), the time of the maximum value of R o ( t max) and the maximum entry and exit fluxes of the metal through the liquid membrane (\(J^{{\max }}_{f} \) and \(J^{{\max }}_{s} \)) of the extraction and stripping reactions were evaluated and results showed good agreement between experimental data and theoretical predictions. Complete transport through the membrane took place according to the following order: Cd(II)>Cu(II)>Ni(II), with similar kinetic parameters obtained for Cu(II) and Cd(III). The transport behaviour of Ni(II) was different to that of Cu(II) and Cd(III), probably due to the different stoichiometry of the nickel complex compared to those of the other metal ions and the different chemical conditions required for its formation. The influence of the sample salinity on the transport kinetics was studied. k 1 values decreased slightly when the feed solution salinity was increased for Cu(II) and Ni(II), but not for Cd(II). Values of k 2 were practically unaffected. The proposed BLM was applied to the preconcentration and separation of metal ions (prior to their determination) in water samples with different saline matrices (CRM, river water and seawater), and good agreement with the certified values was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang B, Wang B, Zhang X, Fang H, Feng X (2005) Zhiye Yu Jiankang 21(10):1491–1492

    CAS  Google Scholar 

  2. Karami H, Mousavi MF, Yamini Y, Shamsipur M (2004) Anal Chim Acta 509(1):89–94

    Article  CAS  Google Scholar 

  3. Leng J (1995) Lihua Jianyan Huaxue Fence 31(1):48–50

    CAS  Google Scholar 

  4. Yamagaki K, Takahashi T, Yamada K, Yoshii M (1989) Suishitsu Odaku Kenkyu 12(8):524–7

    CAS  Google Scholar 

  5. Gitsova S, Yaneva S, Petrov I (1981) Metod Anal Morsk 59–65

  6. Okumura M, Idogaki M (1976) Shimane Daigaku Bunrigakubu Kiyo 10:71–76

    CAS  Google Scholar 

  7. Watanabe K, Katayama M, Itagaki M (2005) Solv Extract Res Dev 12:85–100

    Google Scholar 

  8. Wei GT, Yang Z, Chen CJ (2003) Anal Chim Acta 488(2):183–192

    Article  CAS  Google Scholar 

  9. Lin S, Liu M, Xie J (1997) Yankuang Ceshi 16(4):245–249

    CAS  Google Scholar 

  10. García-Vargas M, Hernández-Artiga MP, Pérez-Bustamante JA (1984) Anal Chim Acta 157:363–367

    Article  Google Scholar 

  11. Skalli B, Kacemi KE, Belcadi S, Bahloul A, Kitane S, Marouf B (1998) Quím Anal 17(2):83–88

    Google Scholar 

  12. Cresser MS (1978) Spectroscopic analysis. Butterworths, Sevenoaks, UK

  13. Campderros ME, Acosta AO, Marchese J (1998) J Chem Technol Biotechnol 72(1):55–59

    Google Scholar 

  14. Ndungu K, Djane NK, Mathiasson L (1998) J Chromatogr A 826(1):103–108

    Google Scholar 

  15. Garcia-Vargas M, Gallego M, de la Guardia M (1980) Analyst 105:965–973

    Google Scholar 

  16. Issopoulos PB, Economou PT (1992) Bulg Chem Commun 25(4):527–537

    Google Scholar 

  17. Garcia-Vargas M, Belizon M, Hernandez-Artiga MP, Martinez C, Perez-Bustamante JA (1986) Appl Spectrosc 40(7):1058–1062

    Google Scholar 

  18. Garcia-Vargas M, Belizon MC, Milla M, Perez-Bustamante JA (1985) Analyst 110(1):51–55

    Article  CAS  Google Scholar 

  19. Iskander MF, Saddeck S (1977) Inorg Chim Acta 22(2):141–147

    Google Scholar 

  20. Katyal M, Dutt Y (1975) Talanta 22:151–166

    Article  CAS  Google Scholar 

  21. Lever M (1973) Anal Chim Acta 65(2):311–318

    Article  CAS  Google Scholar 

  22. Singh PK, Kumar DN (2006) Spectrochim Acta Part A 64(4):853–858

    Article  Google Scholar 

  23. Zhu SW, Yuan F, Yang M, Zhu CJ, Pan Y (2002) Wuji Huaxue Xuebao 18(12):1221–1225

    CAS  Google Scholar 

  24. Xiao W, Lu ZL, Wang XJ, Su CY, Yu KB, Liu HQ, Kang BS (2000) Polyhedron 19(11):1295–1304

    Article  CAS  Google Scholar 

  25. Pelizzi C, Pelizzi G, Vitali F (1987) J Chem Soc 1:177–181

    Google Scholar 

  26. Zidan ASA (2003) Phosphorus Sulfur 178:567–582

    Google Scholar 

  27. García-Vargas M, Bautista JM, Toro P (1981) Microchem J 26:557–568

    Article  Google Scholar 

  28. Granado-Castro MD, Galindo-Riaño MD, García-Vargas M (2004) Spectrochim Acta Part B 59:577–583

    Google Scholar 

  29. Granado-Castro MD, Galindo-Riaño MD, García-Vargas M (2004) Anal Chim Acta 506:81–86

    Article  CAS  Google Scholar 

  30. Domínguez-Lledó FC, Galindo-Riaño MD, Díaz-López IC, Garcia-Vargas M, Granado-Castro MD (2007) Anal Bioanal Chem 389:653–659

    Article  Google Scholar 

  31. Crompton TR (1997) Toxicants in aqueous ecosystems. Wiley, Chichester, UK

  32. Metrohm (2004) Determination of nickel and cobalt in sea water (Application Note No. V-69). http://www.metrohm.com/infocenter/applications/notes/an_va.php4. Accessed 7 April 2008

  33. Metrohm (1990) Determination of zinc, cadmium, lead, copper, thallium, nickel and cobalt in water samples after DIN 38406 E16 (Application Bulletin No. 231/2 e; B12916). Metrohm, Herisau, Switzerland

  34. Patole J, Sandbhor U, Padhye S, Deobagkar DN, Anson CE, Powell A (2003) Bioorg Med Chem Lett 13:51–55

    Article  CAS  Google Scholar 

  35. Mongay C, Cerda V (1974) Ann Chim–Rome 64:409–412

    Google Scholar 

  36. Erba C (1981) Tampones. División Química de Reactivos, Grupo Montedison, Lisboa, Portugal

  37. US EPA (1994) Microwave assisted acid digestion of aqueous samples and extracts (EPA Method 3015). US EPA, Washington, DC

  38. Ashraf Chaudry M, Ahmad S, Malik MT (1997) Waste Manag 17:211

  39. Multisimplex (1998) Multisimplex 98. Multisimplex, Karlskrona, Sweden

    Google Scholar 

  40. Leon G, Guzmán MA (2004) Desalination 162:211–215

    Article  CAS  Google Scholar 

  41. Alpaydin S, Yilmaz M, Ersoz M (2004) Sep Sci Technol 39(9):2189–2206

    Google Scholar 

  42. Roig B, Allan IJ, Greenwood R (eds)(2003) A toolbox of existing and emerging methods for water monitoring under the WFD. SWIFT-WFD, EC, Strasbourg

Download references

Acknowledgements

This work was supported by funds from the Ministry of Science and Technology of Spain (Project: MAT 97–0970-C03–03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Galindo-Riaño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granado-Castro, M.D., Galindo-Riaño, M.D., Domínguez-Lledó, F.C. et al. Study of the kinetics of the transport of Cu(II), Cd(II) and Ni(II) ions through a liquid membrane. Anal Bioanal Chem 391, 779–788 (2008). https://doi.org/10.1007/s00216-008-2094-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2094-9

Keywords

Navigation