Skip to main content
Log in

Development of analytical procedures for the determination of hexavalent chromium in corrosion prevention coatings used in the automotive industry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The European directive 2000/53/EC limits the use of Cr(VI) in vehicle manufacturing. Although a maximum of 2 g of Cr(VI) was authorised per vehicle for corrosion prevention coatings of key components, since July 2007 its use has been prohibited except for some particular applications. Therefore, the objective of this work was to develop direct analytical procedures for Cr(VI) determination in the different steel coatings used for screws. Instead of working directly with screws, the optimisation of the procedures was carried out with metallic plates homogeneously coated to improve the data comparability. Extraction of Cr(VI) from the metallic parts was performed by sonication. Two extraction solutions were tested: a direct water extraction solution used in standard protocols and an ammonium/ammonia buffer solution at pH 8.9. The extracts were further analysed for Cr speciation by high-performance liquid chromatography (HPLC) inductively coupled plasma (ICP) atomic emission spectrometry or HPLC ICP mass spectrometry depending on the concentration level. When possible, the coatings were also directly analysed by solid speciation techniques (X-ray photoelectron spectroscopy, XPS, and X-ray absorption near-edge structure, XANES) for validation of the results. Very good results between the different analytical approaches were obtained for the sample of coating made up of a heated paint containing Zn, Al and Cr when using the extracting buffer solution at pH 8.9. After a repeated four-step extraction procedure on the same portion test, taking into account the depth of the surface layer reached, good agreement with XPS and XANES results was obtained. In contrast, for the coatings composed of an alkaline Zn layer where Cr(VI) and Cr(III) are deposited, only the extraction procedure using water allowed the detection of Cr(VI). To elucidate the Cr(VI) reduction during extraction at pH 8.9, the reactivity of Cr(VI) towards different species of Zn generally present in the coatings (metallic Zn and zinc oxide) was studied. The results showed that metallic Zn rapidly reduces Cr(VI), whereas this reaction is less evident in the presence of zinc oxide. Water was then retained for coatings containing metallic Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kretchik JT (2005) Chem Health Saf 12:41–41

    Google Scholar 

  2. Ebdon L, Pitts L, Cornelis R, Crews H, Donard OFX, Quevauviller P (2001) (eds) Trace element speciation for environment, food and health. Royal Society of Chemistry, Cambridge

  3. Marqués MJ, Salvador A, Morales-Rubio AE, de la Guardia M (1998) Fresenius J Anal Chem 362:239–248

    Article  Google Scholar 

  4. Kotas J, Stasicka Z (2000) Environ Pollut 107:263–283

    Article  CAS  Google Scholar 

  5. Marqués MJ, Salvador A, Morales-Rubio AE, de la Guardia M (2000) Fresenius J Anal Chem 367:601–613

    Article  Google Scholar 

  6. Gomez V, Callao MP (2006) Trends Anal Chem 25:1006–1015

    Article  CAS  Google Scholar 

  7. ISO (1995) EN ISO 3613. ISO, Geneva

  8. Jambunathan S, Dasgupta PK (2000) J Soc Leather Technol Chem 84:63–73

    CAS  Google Scholar 

  9. Milacic R, Scancar J, Urbanc M (1999) J Soc Leather Technol Chem 82:91–93

    Google Scholar 

  10. Boiano JM, Wallace ME, Sieber KS, Groff JH, Wang J, Ashley K (2000) J Environ Monit 2:329–333

    Article  CAS  Google Scholar 

  11. Ndung’u K, Djane N-K, Malcus F, Mathiasson L (1999) Analyst 124:1367–1372

    Article  CAS  Google Scholar 

  12. Karwas CP (1995) J Environ Sci Health Part A 30:1223–1225

    Article  Google Scholar 

  13. Wang J, Ashley K, Kennedy ER, Neumeister C (1997) Analyst 122:1307–1312

    Article  CAS  Google Scholar 

  14. Wang J, Ashley K, Marlow D, England EC, Carlton G (1999) Anal Chem 71:1027–1032

    Article  CAS  Google Scholar 

  15. Szulczewski MD, Helmke PA, Bleam WF (1997) Environ Sci Technol 31:2954–2959

    Article  CAS  Google Scholar 

  16. Zatka VJ (1985) Am Ind Hyg Assoc J 46:327–331

    CAS  Google Scholar 

  17. Huo D, Lu Y, Kingston HM (1998) Environ Sci Technol 32:3418–3423

    Article  CAS  Google Scholar 

  18. Vitale RJ, Mussoline GR, Petura JC, James BR (1994) J Environ Qual 23:1249–1256

    Article  CAS  Google Scholar 

  19. James BR, Petura JC, Vitale RJ, Mussoline GR (1995) Environ Sci Technol 29:2377–2381

    Article  CAS  Google Scholar 

  20. Séby F, Gagean M, Garraud H, Castetbon A, Donard OFX (2003) Anal Bioanal Chem 377:685–694

    Article  CAS  Google Scholar 

  21. Shaffer RE, Cross JO, Rose-Pehrsson SL, Elam WT (2001) Anal Chim Acta 442:295–304

    Article  CAS  Google Scholar 

  22. Zachara JM, Ainsworth CC, Brown GE, Catalano JG, McKinley JP, Qafoku O, Smith SC, Szecsody JE, Traina SJ, Warner JA (2004) Geochim Cosmochim Acta 68:13–30

    Article  CAS  Google Scholar 

  23. Peterson ML, Brown GE, Parks GA, Stein CL (1997) Geochim Cosmochim Acta 61:3399–3412

    Article  CAS  Google Scholar 

  24. Peterson ML, Brown GE, Parks GA (1996) Colloids Surf A 107:77–88

    Article  CAS  Google Scholar 

  25. Loyaux-Lawniczak S, Refait P, Ehrhardt J-J, Lecompe P, Génin J-MR (2000) Environ Sci Technol 34:438–443

    Article  CAS  Google Scholar 

  26. Mullet M, Boursiquot S, Ehrhardt J-J (2004) Colloid Surf A 244:77–85

    Article  CAS  Google Scholar 

  27. Ortega R, Devès G, Fayard B, Salomé M, Susini J (2003) Nucl Instrum Methods B 210:325–329

    Article  CAS  Google Scholar 

  28. Chidambaram D, Halada GP, Clayton CR (2001) Appl Surf Sci 181:283–295

    Article  CAS  Google Scholar 

  29. Jeffcoate CS, Isaacs HS, Aldykiewicz AJ, Ryan MP (2000) J Electrochem Soc 147:540–547

    Article  CAS  Google Scholar 

  30. Anandan C, William Grips VK, Rajam KS, Jayaram V, Parthasarathi B (2002) Appl Surf Sci 191:254–260

    Article  CAS  Google Scholar 

  31. Kagwade SV, Clayton CR, Halada GP (2001) Surf Interface Anal 31:442–447

    Article  CAS  Google Scholar 

  32. Xia L, Akiyama E, Frankel G, McCreery R (2000) J Electrochem Soc 147:2556–2562

    Article  CAS  Google Scholar 

  33. Kendig M, Jeanjaquet S, Addison R, Waldrop J (2001) Surf Coat Technol 140:58–66

    Article  CAS  Google Scholar 

  34. Séby F, Charles S, Gagean M, Garraud H, Donard OFX (2003) J Anal At Spectrom 18:1386–1390

    Article  CAS  Google Scholar 

  35. Charles S (2004) Thesis, Université de Pau et des Pays de l’Adour, Pau

  36. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  37. Shirley DA (1972) Phys Rev B 5:4709–4714

    Article  Google Scholar 

  38. Susini J, Salomé M, Fayard B, Ortega R, Kaulich B (2002) Surf Rev Lett 9:203–211

    Article  CAS  Google Scholar 

  39. Bajt S, Clark SB, Sutton SR, Rivers ML, Smith JV (1993) Anal Chem 65:1800–1804

    Article  CAS  Google Scholar 

  40. Ashley K, Howe AM, Demange M, Nygren O (2003) J Environ Monit 5:707–716

    Article  CAS  Google Scholar 

  41. Tirez K, Brusten W, Cluyts A, Patyn J, De Brucker N (2003) J Anal At Spectrom 18:922–932

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the ESRF (Grenoble, France) for providing the X-ray beam for XANES experiments, and especially to J. Susini and the ID-21 staff for their valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Séby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Séby, F., Castetbon, A., Ortega, R. et al. Development of analytical procedures for the determination of hexavalent chromium in corrosion prevention coatings used in the automotive industry. Anal Bioanal Chem 391, 587–597 (2008). https://doi.org/10.1007/s00216-008-2051-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2051-7

Keywords

Navigation