Skip to main content

Advertisement

Log in

An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We previously reported that transferrin (Tf)-modified liposomes (Tf-L) additionally modified with a cholesterylated pH-sensitive fusogenic peptide (Chol-GALA) can release an encapsulated aqueous phase marker to cytosol via endosomal membrane fusion. However, further obstacles need to be overcome to bring the Tf-L to the level of a viral-like gene delivery system. In this study, we developed a novel packaging method to encapsulate condensed plasmid DNA into PEgylated Tf-L (Tf-PEG-L) to form a core–shell-type nanoparticle. The most difficult challenge was to provide a mechanism of escape for the condensed core from endosome to cytosol in the presence of polyethylene glycol (PEG). We hypothesized that a membrane-introduced Chol-GALA and a PEgylated GALA would interact synergistically to induce membrane fusion between liposome and endosome. By simultaneously incorporating Chol-GALA into the membrane of Tf-PEG-L and GALA at tips of PEG chains, a condensed core was released into cytosol, and transfection acitivty increased 100-fold. We concluded that topological control was responsible for the synergistic effect of GALA derivatives introduced on Tf-PEG-L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–b
Fig. 3
Fig. 4a–b
Fig. 5a–c
Fig. 6
Fig. 7a–b

Similar content being viewed by others

Abbreviations

Chol:

Cholesterol

Chol-GALA:

Cholesteryl-GALA

CLSM:

Confocal laser scanning microscopy

DCP:

Dicetylphosphate

DOPE:

Dioleoyl phosphatidylethanolamine

DPC:

DNA/polycation complex

DSPE-PEG2000:

Distearyl phosphatidyl ethanolamine-polyethylenglycol 2000

EPC:

Egg phosphatidylcholine

FITC:

Fluorescein isothiocyanate

HA:

Hemagglutinin

MEND:

Multifunctional envelope-type nanodevice

NBD-DOPE:

4-Nitrobenzo-2-oxa-1,3-diazolyl-DOPE

N/P:

Nitrogen/phosphate

OGP:

n-Octyl β-D-glucopyranoside

pDNA:

Plasmid DNA

PDP-PE:

N-[3-(2-pyridyldithio)propionate]-1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine

PEG-GALA:

PEgylated GALA

PLL:

Poly-L-lysine

Rho-DOPE:

Lissamine rhodamine B-DOPE

SPDP:

3-(2-Pyridyldithio)propionic acid N-hydroxysuccinimide ester

S-Rh:

Sulforhodamine B

SUV*:

Detergent-rich small unilamellar vesicle

Tf:

Transferrin

Tf-L:

Tf-modified liposomes

Tf-PEG-L:

PEgylated Tf-L

Tf-PEG-L(Chol-GALA):

Tf-PEG-L modified with Chol-GALA

Tf-PEG-L(Chol&PEG-GALA):

Tf-PEG-L modified with Chol-GALA and PEG-GALA

Tf-PEG-L(PEG-GALA):

Tf-PEG-L modified with PEG-GALA

References

  1. Hughson FM (1995) Curr Biol 5:265–274

    Article  CAS  Google Scholar 

  2. Nemerow GR (2000) Virology 274:1–4

    Article  CAS  Google Scholar 

  3. Harel A, Forbes DJ (2001) Nature Cell Biol 3:E267–E269

    Article  CAS  Google Scholar 

  4. Jooss K, Chirmule N (2003) Gene Ther 10:955–963

    Article  CAS  Google Scholar 

  5. Meier O, Greber UF (2003) J Gene Med 5:451–462

    Article  CAS  Google Scholar 

  6. Lakadamyali M, Rust MJ, Zhuang X (2004) Microbes Infect 6:929–936

    Article  CAS  Google Scholar 

  7. Smith AE, Helenius A (2004) Science 304:237–242

    Article  CAS  Google Scholar 

  8. Portela A, Digard P (2002) J General Virol 83:723–734

    CAS  Google Scholar 

  9. Kakudo T, Chaki S, Futaki S, Nakase I, Akaji K, Kawakami T, Maruyama K, Kamiya H, Harashima H (2004) Biochemistry 43:5618–5628

    Article  CAS  Google Scholar 

  10. Simões S, Slepushkin V, Gaspar R, Pedroso de Lima MC, Düzgüneş N (1998) Gene Ther 5:955–964

    Article  Google Scholar 

  11. Nir S, Nicol F, Szoka FC Jr (1999) Mol Membr Biol 16:95–101

    Article  CAS  Google Scholar 

  12. Simões S, Slepushkin V, Pires P, Gaspar R, Pedroso de Lima MC, Düzgüneş N (1999) Gene Ther 6:1798–1807

    Article  Google Scholar 

  13. Li W, Nicol F, Szoka FC Jr (2004) Adv Drug Deliv Rev 56:967–985

    Article  CAS  Google Scholar 

  14. Sasaki K, Kogure K, Chaki S, Kihira Y, Ueno M, Harashima H (2005) Int J Pharm 296:142–150

    Article  CAS  Google Scholar 

  15. Huang J, Ito Y, Kobune M, Sasaki K, Nakamura K, Dehari H, Takahashi K, Ikeda K, Uchida H, Kato K, Hamada H (2003) J Gene Med 5:900–908

    Article  CAS  Google Scholar 

  16. Danev R, Nagayama K (2001) Ultramicroscopy 88:243–252

    Article  CAS  Google Scholar 

  17. Hatakeyama H, Akita H, Maruyama K, Suhara T, Harashima H (2004) Int J Pharm 281:25–33

    Article  CAS  Google Scholar 

  18. Kamiya H, Fujimura Y, Matsuoka I, Harashima H (2002) Biochem Biophys Res Commun 298:591–597

    Article  CAS  Google Scholar 

  19. Kogure K, Moriguchi R, Sasaki K, Ueno M, Futaki S, Harashima H (2004) J Control Release 98:317–323

    Article  CAS  Google Scholar 

  20. Ueno M, Akechi Y (1991) Chem Lett 1991:1801–1804

    Article  Google Scholar 

  21. Ohota A, Danev R, Nagayama K, Mita T, Asakawa T, Miyagishi S (2006) Langmuir 22:8472–8477

    Article  Google Scholar 

  22. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Cancer Res 55:3752–3756

    CAS  Google Scholar 

  23. Masuda T, Akita H, Harashima H (2005) FEBS Lett 579:2143–2148

    Article  CAS  Google Scholar 

  24. Sorgi FL, Bhattacharya S, Huang L (1997) Gene Ther 4:961–968

    Article  CAS  Google Scholar 

  25. Khalil IA, Kogure K, Futaki S, Hama S, Akita H, Ueno M, Kishida H, Kudoh M, Mishina Y, Kataoka K, Yamada M, Harashima H (2007) Gene Ther 14:682–689

    Article  CAS  Google Scholar 

  26. Wheeler JJ, Palmer L, Ossanlou M, MacLachlan I, Graham RW, Zhang YP, Hope MJ, Scherrer P, Cullis PR (1999) Gene Ther 6:271–281

    Article  CAS  Google Scholar 

  27. Steinman RM, Brodie SE, Cohn ZA (1976) J Cell Biol 68:665–687

    Article  CAS  Google Scholar 

  28. Moriguchi R, Kogure K, Akita H, Futaki S, Miyagishi M, Taira K, Harashima H (2005) Int J Pharm 301:277–285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Grants-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by Grants-in-Aid for Scientific Research on Priority Areas from the Japan Society for the Promotion of Science. The authors wish to thank Dr. Daryl Henderson for his helpful advice in writing the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyoshi Harashima.

Additional information

Kentaro Sasaki and Kentaro Kogure contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 63.8 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, K., Kogure, K., Chaki, S. et al. An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Anal Bioanal Chem 391, 2717–2727 (2008). https://doi.org/10.1007/s00216-008-2012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2012-1

Keywords

Navigation