Skip to main content
Log in

Structure analysis using acoustically levitated droplets

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Synchrotron diffraction with a micrometer-sized X-ray beam permits the efficient characterization of micrometer-sized samples, even in time-resolved experiments, which is important because often the amount of sample available is small and/or the sample is expensive. In this context, we will present acoustic levitation as a useful sample handling method for small solid and liquid samples, which are suspended in a gaseous environment (air) by means of a stationary ultrasonic field. A study of agglomeration and crystallization processes in situ was performed by continuously increasing the concentration of the samples by evaporating the solvent. Absorption and contamination processes on the sample container walls were suppressed strongly by this procedure, and parasitic scattering such as that observed when using glass capillaries was also absent. The samples investigated were either dissolved or dispersed in water droplets with diameters in the range of 1 micrometer to 2 millimeters. Initial results from time-resolved synchrotron small- and wide-angle X-ray scattering measurements of ascorbic acid, acetylsalicylic acid, apoferritin, and colloidal gold are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Janasek D, Franzke J, Manz A (2006) Nature 442:374–380

    Article  CAS  Google Scholar 

  2. Santesson S, Nilsson S (2004) Anal Bioanal Chem 378:1704–1709

    Article  CAS  Google Scholar 

  3. Welter E, Neidhart B (1997) Fresenius J Anal Chem 357:345–350

    Article  CAS  Google Scholar 

  4. Biswas A (1995) J Cryst Growth 147:155–164

    Article  CAS  Google Scholar 

  5. Yarin AL, Brenn G, Kastner O, Rensink D, Tropea C (1999) J Fluid Mech 399:151–204

    Article  CAS  Google Scholar 

  6. Schiffter H, Lee G (2007) J Pharm Sci 96:2284–2295

    Article  CAS  Google Scholar 

  7. Schiffter H, Lee G (2007) J Pharm Sci 96:2274–2283

    Article  CAS  Google Scholar 

  8. Santesson S, Cedergren-Zeppezauer ES, Johansson T, Laurell T, Nilsson J, Nilsson S (2003) Anal Chem 75:1733–1740

    Article  CAS  Google Scholar 

  9. Leiterer J, Leitenberger W, Emmerling F, Thünemann AF, Panne U (2006) J Appl Crystallogr 39:771–773

    Article  CAS  Google Scholar 

  10. Cerenius Y, Oskarsson A, Santesson S, Nilsson S, Kloo L (2003) J Appl Crystallogr 36:163–164

    Article  CAS  Google Scholar 

  11. Nuernberger P, Krampert G, Brixner T, Vogt G (2006) Rev Sci Instrum 77:083113–083116

    Article  Google Scholar 

  12. Vandaele V, Lambert P, Delchambre A (2005) Precision Eng 29:491–505

    Article  Google Scholar 

  13. Weber JKR, Hampton DS, Merkley DR, Rey CA, Zatarski MM, Nordine PC (1994) Rev Sci Instrum 65:456–465

    Article  CAS  Google Scholar 

  14. Jacob P, Stockhaus A, Hergenroder R, Klockow D (2001) Fresenius J Anal Chem 371:726–733

    Article  CAS  Google Scholar 

  15. Nagashio K, Takamura Y, Kuribayashi K, Shiohara Y (1999) J Cryst Growth 200:118–125

    Article  CAS  Google Scholar 

  16. Krishnan S, Price DL (2000) J Phys Condens Matter 12:R145–R176

    Article  CAS  Google Scholar 

  17. Paris O, Li C, Siegel S, Weseloh G, Emmerling F, Riesemeier H, Erko A, Fratzl P (2007) J Appl Crystallogr 40:S466–S470

    Article  CAS  Google Scholar 

  18. Debye P, Scherrer P (1916) Physik Z 17:277–283

    CAS  Google Scholar 

  19. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) High Pressure Res 14:235–248

    Article  Google Scholar 

  20. Leiterer J, Emmerling F, Thünemann AF, Panne U (2006) Z Anorg Allg Chem 632:2132

    Article  Google Scholar 

  21. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, London

    Google Scholar 

  22. Bond AD, Boese R, Desiraju GR (2007) Angew Chem Int Ed 46:615–617

    Article  CAS  Google Scholar 

  23. Weber P, Bendich A, Schalch W (1996) Int J Vitam Nutr Res 66:19–30

    CAS  Google Scholar 

  24. Haussler W, Wilk A, Gapinski J, Patkowski A (2002) J Chem Phys 117:413–426

    Article  CAS  Google Scholar 

  25. Koradi R (2003) MOLMOL, 2K.2 edn. ETH, Zürich

  26. Bergmann A, Fritz G, Glatter O (2005) MULTIBODY for Windows, 2.2005 edn. Karl-Franzens University, Graz

  27. Guinier A, Fournet G (1955) Small-angle scattering of X-rays, XI. Wiley, New York

    Google Scholar 

  28. WaveMetrics, Inc. (2007) IGOR Pro 6, 6.0.0.0 edn. WaveMetrics, Inc., Lake Oswego, OR

  29. Mori Y, Furukawa M, Hayashi T, Nakamura K (2006) Part Sci Technol 24:97–103

    Article  CAS  Google Scholar 

  30. Pedersen JS (1997) Adv Colloid Interf Sci 70:171–210

    Article  CAS  Google Scholar 

  31. Hoye JS, Blum L (1977) J Stat Phys 16:399–413

    Article  Google Scholar 

  32. Liu Y (2005) Studies of structure and dynamics of biological macro-molecular assemblies by low angle neutron diffraction and inelastic X-ray scattering. Ph.D. Thesis, Dept. Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leiterer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leiterer, J., Delißen, F., Emmerling, F. et al. Structure analysis using acoustically levitated droplets. Anal Bioanal Chem 391, 1221–1228 (2008). https://doi.org/10.1007/s00216-008-2011-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2011-2

Keywords

Navigation