Analytical and Bioanalytical Chemistry

, Volume 391, Issue 4, pp 1221–1228 | Cite as

Structure analysis using acoustically levitated droplets

  • J. Leiterer
  • F. Delißen
  • F. Emmerling
  • A. F. Thünemann
  • U. Panne
Original Paper

Abstract

Synchrotron diffraction with a micrometer-sized X-ray beam permits the efficient characterization of micrometer-sized samples, even in time-resolved experiments, which is important because often the amount of sample available is small and/or the sample is expensive. In this context, we will present acoustic levitation as a useful sample handling method for small solid and liquid samples, which are suspended in a gaseous environment (air) by means of a stationary ultrasonic field. A study of agglomeration and crystallization processes in situ was performed by continuously increasing the concentration of the samples by evaporating the solvent. Absorption and contamination processes on the sample container walls were suppressed strongly by this procedure, and parasitic scattering such as that observed when using glass capillaries was also absent. The samples investigated were either dissolved or dispersed in water droplets with diameters in the range of 1 micrometer to 2 millimeters. Initial results from time-resolved synchrotron small- and wide-angle X-ray scattering measurements of ascorbic acid, acetylsalicylic acid, apoferritin, and colloidal gold are presented.

Keywords

X-ray diffraction methods SAXS WAXS Nanoparticles Nanotechnology Sampling Acoustic levitation Agglomeration Crystallization 

References

  1. 1.
    Janasek D, Franzke J, Manz A (2006) Nature 442:374–380CrossRefGoogle Scholar
  2. 2.
    Santesson S, Nilsson S (2004) Anal Bioanal Chem 378:1704–1709CrossRefGoogle Scholar
  3. 3.
    Welter E, Neidhart B (1997) Fresenius J Anal Chem 357:345–350CrossRefGoogle Scholar
  4. 4.
    Biswas A (1995) J Cryst Growth 147:155–164CrossRefGoogle Scholar
  5. 5.
    Yarin AL, Brenn G, Kastner O, Rensink D, Tropea C (1999) J Fluid Mech 399:151–204CrossRefGoogle Scholar
  6. 6.
    Schiffter H, Lee G (2007) J Pharm Sci 96:2284–2295CrossRefGoogle Scholar
  7. 7.
    Schiffter H, Lee G (2007) J Pharm Sci 96:2274–2283CrossRefGoogle Scholar
  8. 8.
    Santesson S, Cedergren-Zeppezauer ES, Johansson T, Laurell T, Nilsson J, Nilsson S (2003) Anal Chem 75:1733–1740CrossRefGoogle Scholar
  9. 9.
    Leiterer J, Leitenberger W, Emmerling F, Thünemann AF, Panne U (2006) J Appl Crystallogr 39:771–773CrossRefGoogle Scholar
  10. 10.
    Cerenius Y, Oskarsson A, Santesson S, Nilsson S, Kloo L (2003) J Appl Crystallogr 36:163–164CrossRefGoogle Scholar
  11. 11.
    Nuernberger P, Krampert G, Brixner T, Vogt G (2006) Rev Sci Instrum 77:083113–083116CrossRefGoogle Scholar
  12. 12.
    Vandaele V, Lambert P, Delchambre A (2005) Precision Eng 29:491–505CrossRefGoogle Scholar
  13. 13.
    Weber JKR, Hampton DS, Merkley DR, Rey CA, Zatarski MM, Nordine PC (1994) Rev Sci Instrum 65:456–465CrossRefGoogle Scholar
  14. 14.
    Jacob P, Stockhaus A, Hergenroder R, Klockow D (2001) Fresenius J Anal Chem 371:726–733CrossRefGoogle Scholar
  15. 15.
    Nagashio K, Takamura Y, Kuribayashi K, Shiohara Y (1999) J Cryst Growth 200:118–125CrossRefGoogle Scholar
  16. 16.
    Krishnan S, Price DL (2000) J Phys Condens Matter 12:R145–R176CrossRefGoogle Scholar
  17. 17.
    Paris O, Li C, Siegel S, Weseloh G, Emmerling F, Riesemeier H, Erko A, Fratzl P (2007) J Appl Crystallogr 40:S466–S470CrossRefGoogle Scholar
  18. 18.
    Debye P, Scherrer P (1916) Physik Z 17:277–283Google Scholar
  19. 19.
    Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) High Pressure Res 14:235–248CrossRefGoogle Scholar
  20. 20.
    Leiterer J, Emmerling F, Thünemann AF, Panne U (2006) Z Anorg Allg Chem 632:2132CrossRefGoogle Scholar
  21. 21.
    Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, LondonGoogle Scholar
  22. 22.
    Bond AD, Boese R, Desiraju GR (2007) Angew Chem Int Ed 46:615–617CrossRefGoogle Scholar
  23. 23.
    Weber P, Bendich A, Schalch W (1996) Int J Vitam Nutr Res 66:19–30Google Scholar
  24. 24.
    Haussler W, Wilk A, Gapinski J, Patkowski A (2002) J Chem Phys 117:413–426CrossRefGoogle Scholar
  25. 25.
    Koradi R (2003) MOLMOL, 2K.2 edn. ETH, ZürichGoogle Scholar
  26. 26.
    Bergmann A, Fritz G, Glatter O (2005) MULTIBODY for Windows, 2.2005 edn. Karl-Franzens University, GrazGoogle Scholar
  27. 27.
    Guinier A, Fournet G (1955) Small-angle scattering of X-rays, XI. Wiley, New YorkGoogle Scholar
  28. 28.
    WaveMetrics, Inc. (2007) IGOR Pro 6, 6.0.0.0 edn. WaveMetrics, Inc., Lake Oswego, ORGoogle Scholar
  29. 29.
    Mori Y, Furukawa M, Hayashi T, Nakamura K (2006) Part Sci Technol 24:97–103CrossRefGoogle Scholar
  30. 30.
    Pedersen JS (1997) Adv Colloid Interf Sci 70:171–210CrossRefGoogle Scholar
  31. 31.
    Hoye JS, Blum L (1977) J Stat Phys 16:399–413CrossRefGoogle Scholar
  32. 32.
    Liu Y (2005) Studies of structure and dynamics of biological macro-molecular assemblies by low angle neutron diffraction and inelastic X-ray scattering. Ph.D. Thesis, Dept. Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MACrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. Leiterer
    • 1
  • F. Delißen
    • 1
  • F. Emmerling
    • 1
  • A. F. Thünemann
    • 1
  • U. Panne
    • 1
  1. 1.BAM Federal Institute for Materials Research and Testing - Analytical Chemistry, I.3 Structural AnalysisReference MaterialsBerlinGermany

Personalised recommendations