Skip to main content
Log in

Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In order to understand the molecular basis of salt stress response, a proteomic approach, employing two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), was used to identify proteins affected by salinity in wheat (Triticum durum ‘Ofanto’). Identification of proteins, whose levels were altered, was performed by comparing protein patterns of salt-treated and control plants. A set of control plants was grown without NaCl addition under the same conditions as the salt-treated plants. Proteins were extracted from the leaves of untreated and NaCl-treated plants, and resolved using 24-cm immobilized pH gradient strips with a pH 4–7 linear gradient in the first dimension and a 12.5% sodium dodecyl sulphate polyacrylamide gel electrophoresis in the second dimension; the gels were stained with Coomassie and image analysis was performed. Quantitative evaluation, statistical analyses and MALDI-TOF MS characterization of the resolved spots in treated and untreated samples enabled us to identify 38 proteins whose levels were altered in response to salt stress. In particular, ten proteins were downregulated and 28 were upregulated. A possible role of these proteins in response to salinity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Flowers TJ, Yeo AR (1995) J Plant Physiol 22:875–884

    Google Scholar 

  2. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Plant Physiol 130:2129–2141

    Article  CAS  Google Scholar 

  3. Zhu JK (2002) Annu Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  4. Greenway H, Munns R (1980) Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  5. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  6. Cushman JC, De Rocher EJ, Bohnert HJ (1990) In: Kalterman F (ed) Environmental injury of plants. Academic, San Diego

    Google Scholar 

  7. Almoguera C, Coca MA, Jouanin L (1995) Plant Physiol 107:765–773

    CAS  Google Scholar 

  8. Munns R (2002) Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  9. Greenway H, Munns R (1980) Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  10. Williams K, Hochstarsser D (1997) In: Wilkins M, Williams K, Appel R, Hochstrasser D (eds) Proteome research: new frontiers in functional genomics. Springer, Berlin

    Google Scholar 

  11. Gygi S, Rochon Y, Fransz B, Aebersold R (1999) Mol Cell Biol 19:1720–1730

    CAS  Google Scholar 

  12. Abbasi FM, Komatsu S (2004) Proteomics 4:2072–2081

    Article  CAS  Google Scholar 

  13. Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Proteomics 5:4185–4196

    Article  CAS  Google Scholar 

  14. Dani V, Simon WJ, Duranti M, Croy RRD (2005) Proteomics 5:737–745

    Article  CAS  Google Scholar 

  15. Kong-ngern K, Daduang S, Wongkham C, Bunnag S, Kosittrakuna M, Theerakulpisuta P (2005) Sci Asia 31:403–408

    Article  CAS  Google Scholar 

  16. Kav NNV, Srivastava S, Goonewardene L, Blade SF (2004) Ann Appl Biol 145:217–230

    Article  CAS  Google Scholar 

  17. Ashraf M, Harrisb PJC (2004) Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  18. Majoul T, Chahed K, Zamiti E, Ouelhazi L, Ghrir R (2000) Electrophoresis 21:2562–2565

    Article  CAS  Google Scholar 

  19. Ouerghi Z, Remy R, Ouelhazi L, Ayadi A, Brulfert J (2000) Electrophoresis 21:2487–2491

    Article  CAS  Google Scholar 

  20. Gygi SP, Aebersold R (2000) Curr Opin Chem Biol 4:489–494

    Article  CAS  Google Scholar 

  21. Damerval C, de Vienne D, Zivy M, Thiellement H (1986) Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  22. O’Farrel PH (1975) J Biol Chem. 250:4007–4021

    Google Scholar 

  23. Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu X, Knox JP, Bolwell P, Slabas AR (2002) Electrophoresis 23:1754–1765

    Article  CAS  Google Scholar 

  24. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  25. Parker KC, Garrels JI, Hines W, Butler EM, McKee HZ, Patterson D, Martini S (1998) Electrophoresis 19:1920–1932

    Article  CAS  Google Scholar 

  26. Moller IM (2001) Ann Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  Google Scholar 

  27. Abbasi F, Komatsu S (2004) Proteomics 4:2072–2081

    Article  CAS  Google Scholar 

  28. Leah R, Kigel J, Svendsen I, Mundy J (1995) J Biol Chem 270:15789–15797

    Article  CAS  Google Scholar 

  29. Hughes MA, Brown K, Pancoro A, Murray BS, Oxtoby E, Hughes J (1992) Arch Biochem Biophys 295:273–279

    Article  CAS  Google Scholar 

  30. Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Science 262:1051–1054

    Article  CAS  Google Scholar 

  31. Jiang Y-Q, Deyholos MK (2006) BMC Plant Biol 6:25

    Article  CAS  Google Scholar 

  32. Lal SK, Johnson S, Conway T, Kelley PM (1991) Plant Mol Biol 16:787–795

    Article  CAS  Google Scholar 

  33. Iida H, Yahara I (1985) Nature 315:688–690

    Article  CAS  Google Scholar 

  34. Forsthoefel NR, Cushman MAF, Cushman JC (1995) Plant Physiol 108:1185–1195

    Article  CAS  Google Scholar 

  35. Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Plant Physiol 117:1253–1263

    Article  CAS  Google Scholar 

  36. Levy R (1979) Adv Enzymol 48:97–192

    CAS  Google Scholar 

  37. Nemoto Y, Sasakuma T (2000) Plant Sci 158:53–60

    Article  CAS  Google Scholar 

  38. Fougère F, Lerudulier D, Streeter JG (1991) Plant Physiol 96:1228–1236

    Article  Google Scholar 

  39. Di Martino C, DelWne S, Pizzuto R, Loreto F, Fuggi A (2003) New Phytol 158:455–463

    Article  CAS  Google Scholar 

  40. Hamilton EW, Heckathorn SA 3rd (2001) Plant Physiol 126:1266–1274

    Article  CAS  Google Scholar 

  41. Van Breusegem F, Dekeyser R, Gielen J, Van Montagu M, Caplan A (1994) Plant Physiol 105:1463–1464

    Article  CAS  Google Scholar 

  42. Ireland RJ, Lea PJ (1999) In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Dekker, New York

    Google Scholar 

  43. Silveira JA, Viegas RA, da Rocha IM, Moreira AC, Moreira Rde A, Oliveira JT (2003) J Plant Physiol 160:115–123

    Article  CAS  Google Scholar 

  44. Apel K, Hirt H (2004) Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  45. Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  46. Asada K (1999) Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  47. Smirnoff N (1993) New Phytol 125:27–58

    Article  CAS  Google Scholar 

  48. Arakaki AK, Ceccarelli EA, Carrillo N (1997) FASEB J 11:133–140

    CAS  Google Scholar 

  49. Hajrezael M-R, Peisker M, Tchiersch H, Palatnik J, Valle ME, Carrillo N, Sonnewald V (2002) Plant J 29:1–14

    Article  Google Scholar 

  50. Atkins CA, Patterson BD, Graham D (1972) Plant Physiol 50:214–217

    CAS  Google Scholar 

  51. Hewett-Emmett D, Tashian RE (1996) Mol Phylogenet Evol 5:50–77

    Article  CAS  Google Scholar 

  52. Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) Electrophoresis 22:2824–2831

    Article  CAS  Google Scholar 

  53. Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanassov A, Nakamura C (2000) Genes Genet Syst 75:179–88

    Article  CAS  Google Scholar 

  54. Martel R, Ctoney LP, Pelcher LE, Hemmingsen SM (1990) Gene 94:181–187

    Article  CAS  Google Scholar 

  55. Portis AR Jr (2003) Photosynth Res 751:11–27

    Article  Google Scholar 

  56. Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) J Exp Bot 57:1109–1118

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Italian Department of Agriculture Food and Forestry, in the framework of Triticum durum quality programme (FRUMISIS project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Laganà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruso, G., Cavaliere, C., Guarino, C. et al. Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391, 381–390 (2008). https://doi.org/10.1007/s00216-008-2008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2008-x

Keywords

Navigation