Skip to main content
Log in

Application of SPME to the determination of alkylphenols and bisphenol A in cyanobacteria culture media

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In order to survey the influence of estrogenic compounds on cyanobacteria, solid-phase microextraction (SPME) with a carbowax-divinylbenzene fibre was used for the determination of tert-octylphenol (tert-OP), n-nonylphenol (n-NP), technical nonylphenol (tech-NP) and bisphenol A (BPA) in cyanobacteria culture media by gas chromatography with flame ionization detection. Determinations were carried out without derivatization in deionized water and filtered culture media. A comparison between f2 and Fraquil culture media was performed, which showed that only f2 allowed quantitative recoveries. Headspace SPME with salting out, requiring only 10 mL of sample, was suitable for tert-OP, n-NP, and tech-NP determination with limits of detection (LOD) of <0.05 μg L−1. For BPA, direct immersion SPME could provide a LOD of 1 μg L−1. Automated sampling allowed reproducible extraction. No exudate substances overlapped with the studied compounds during the chromatographic separation and no matrix effects were observed. Ecotoxicity tests can be performed by single spiking of tert-OP and tech-NP and multiple spiking of n-NP due to its lower stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kretschmer XC, Baldwin WS (2005) Chem Biol Interact 15:111–128

    Article  Google Scholar 

  2. Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GBJ, Gerritsen A, de Boer J, Bulder AS, Grinwis GCM, Kuiper RV, Legler J, Murk TAJ, Peijnenburg W, Verhaar HJM, de Voogt P (2005) Chemosphere 59:511–524

    Article  CAS  Google Scholar 

  3. Quirós L, Céspedes R, Lacorte S, Viana P, Raldúa D, Barceló D, Piña B (2005) Environ Toxicol Chem 24:389–395

    Article  Google Scholar 

  4. Céspedes R, Petrovic M, Raldúa D, Saura Ú, Piña B, Lacorte S, Viana P, Barceló D (2004) Anal Bioanal Chem 378:697–708

    Article  Google Scholar 

  5. Céspedes R, Lacorte S, Raldúa D, Ginebreda A, Barceló D, Piña B (2005) Chemosphere 61:1710–1719

    Article  Google Scholar 

  6. Kim Y-S, Katase T, Sekine S, Inoue T, Makino M, Uchiyama T, Fujimoto Y, Yamashita N (2004) Chemosphere 54:1127–1134

    Article  CAS  Google Scholar 

  7. Vetillard A, Bailhache T (2006) Toxicol Sci 92:537–544

    Article  CAS  Google Scholar 

  8. Blackburn MA, Kirby SJ, Waldock MJ (1999) Mar Pollut Bull 38:109–118

    Article  CAS  Google Scholar 

  9. Koplin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211

    Article  Google Scholar 

  10. Belfroid A, van Velzen M, van der Horst B, Vethaak D (2002) Chemosphere 49:97–103

    Article  CAS  Google Scholar 

  11. Fernandez MP, Ikonomou MG, Buchanan I (2007) Sci Total Environ 373:250–269

    Article  CAS  Google Scholar 

  12. Bolz U, Körner W, Hagenmaier H (2000) Chemosphere 40:929–935

    Article  CAS  Google Scholar 

  13. Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD (2007) J Chromatogr A 1138:32–41

    Article  CAS  Google Scholar 

  14. Yu Z, Peldszus S, Huck PM (2007) J Chromatogr A 1148:65–77

    Article  CAS  Google Scholar 

  15. Hernando MD, Mezcua M, Gómez MJ, Malato O, Agüera A, Fernández-Alba AR (2004) J Chromatogr A 1047:129–135

    Article  CAS  Google Scholar 

  16. Loos R, Hanke G, Umlauf G, Eisenreich SJ (2007) Chemosphere 66:690–699

    Article  CAS  Google Scholar 

  17. Pedersen SN, Lindholst C (1999) J Chromatogr A 864:17–24

    Article  CAS  Google Scholar 

  18. Jahnke A, Gandrass J, Ruck W (2004) J Chromatogr A 1035:115–122

    Article  CAS  Google Scholar 

  19. Beck I-C, Bruhn R, Gandrass J, Ruck W (2005) J Chromatogr A 1090:98–106

    Article  CAS  Google Scholar 

  20. Braun P, Moeder M, Schrader St, Popp P, Kuschk P, Engewald W (2003) J Chomatogr A 988:41–51

    Article  CAS  Google Scholar 

  21. Díaz A, Ventura F, Galceran MT (2002) J Chromatogr A 963:159–167

    Article  Google Scholar 

  22. Basheer C, Jayaraman A, Kee MK, Valiyaveettil S, Lee HK (2005) J Chromatogr A 1100:137–143

    Article  CAS  Google Scholar 

  23. Chang C-M, Chou C-C, Lee M-R (2005) Anal Chim Acta 539:41–47

    Article  CAS  Google Scholar 

  24. Helaleh MIH, Fujii S, Korenaga T (2001) Talanta 54:1039–1047

    Article  CAS  Google Scholar 

  25. Vasconcelos VM (2001) Freshwater cyanobacteria and their toxins in Portugal. In: Chorus I (ed) Cyanotoxins: occurrence, causes and consequences. Springer, New York

  26. Morel FMM, Westall JC, Rueter JG Jr, Chaplick JP (1975) Description of algal growth media AQUIL and FRAQUIL (Technical Note). R.M. Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology, Cambridge, MA

  27. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York

  28. Saker ML, Fastner J, Dittmann E, Christiansen G, Vasconcelos VM (2005) J Appl Microbiol 99:749–757

    Article  CAS  Google Scholar 

  29. Wiegand C, Pflugmacher S (2005) Toxicol Appl Pharmacol 203:201–218

    Article  CAS  Google Scholar 

  30. Basheer C, Lee HK (2004) J Chromatogr A 1057:163–169

    Article  CAS  Google Scholar 

  31. Mani V (1999) Properties of commercial SPME coatings. In: Pawliszyn J (ed) Applications of solid phase microextraction. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  32. Matich AJ (1999) Analysis of food and plant volatiles. In: Pawliszyn J (ed) Applications of solid phase microextraction. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  33. EC (2005) Common implementation strategy for the Water Framework Directive: environmental quality standards. Octylphenols (para-tert-octylphenol). European Commission, Brussels

  34. EC (2005) Common implementation strategy for the Water Framework Directive: environmental quality standards. 4-Nonylphenol (branched) and nonylphenol. European Commission, Brussels

  35. Groshart CP, Okkerman PC, Pijnenburg AMCM (2001) Chemical study on bisphenol A. Directoraat-Generaal Rijkswaterstaat, The Netherlands

    Google Scholar 

  36. Ying G-G, Williams B, Kookana R (2002) Environ Int 28:215–226

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by Fundação para a Ciência e a Tecnologia (FCT), Portugal, through fellowships awarded to T. Stoichev (SFRH/BPD/32700/2006) and Mafalda Baptista (SFRH/BD/16292/2004) and the CONC-REEQ/304/2001 re-equipment project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Stoichev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoichev, T., Baptista, M.S., Basto, M.C.P. et al. Application of SPME to the determination of alkylphenols and bisphenol A in cyanobacteria culture media. Anal Bioanal Chem 391, 425–432 (2008). https://doi.org/10.1007/s00216-008-2005-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2005-0

Keywords

Navigation