Skip to main content

Advertisement

Log in

Incubation type Si-based planar ion channel biosensor

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new planar-type ion channel biosensor with the function of cell culture has been fabricated using silicon on an insulator substrate as the sensor chip material. Coating of the sensor chip with fibronectin was essentially important for cell incubation on the chip. Although the seal resistance was quite low (∼7 MΩ) compared with the pipette patch-clamp gigaohm seal, the whole-cell channel current of the transient receptor potential vanilloid type 1 (TRPV1) channel expressing HEK293 cells was successfully observed, with a good signal-to-noise ratio, using capsaicin as a ligand molecule.

A new planer type ion channel biosensor with function of cell culture is fabricated using the silicon on insulator substrate as the sensor chip material. The coating of the sensor chip by the fibronectin was essentially important for the cell incubation on the chip. Whole cell channel current of TRPV1 channel was successfully observed using capsaicin as a ligand molecule with good signal to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Fertig N, Blick RH, Behrends JC (2002) Biophys J 82:3056–3062

    CAS  Google Scholar 

  2. Sordel T, Raveaud SG, Sauter F, Catherine PC, Marcel F, Waard MD, Arnoult C, Vivaudou M, Chatelain F, D’hahan NP (2006) J Biotechnol 125:142–154

    Article  CAS  Google Scholar 

  3. Matthews B, Judy JW (2006) J Microelectromechan Syst 15:214–222

    Article  Google Scholar 

  4. Pantoja R, Nagarah JM, Starace DM, Melosh NA, Blunck R, Bezanilla F, Heath JR (2004) Biosens Bioelectron 20:509–517

    Article  CAS  Google Scholar 

  5. Sett A, Burkhardt C, Weber U, Van SP, Knott T (2003) Recept Channels 9:59–66

    Article  Google Scholar 

  6. Li XH, Klemic KG, Reed MA, Fred J, Sigworth FJ (2006) Nano Lett 4:815–819

    Article  CAS  Google Scholar 

  7. Zhang ZL, Asano T, Uno H, Tero R, Suzui M, Nakao S, Kaito T, Shibasaki K, Tominaga M, Utsumi Y, Gao YL, Urisu T (2007) Thin Solid Film 516/9:2831–2833

    Google Scholar 

  8. Bruggenmann A, Stoelzle S, George M, Behrends JC, Fertig N (2006) Small 2:840–846

    Article  CAS  Google Scholar 

  9. Dubin AE, Nasser N, Rohrbacher J, Hermans AN, Marrannes R, Grantham C, Van RK, Cik M, Chaplan SR, Gallacher D, Xu J, Guia A, Byrne NG, Mathes C (2005) J Biomol Screen 10:168–181

    Article  CAS  Google Scholar 

  10. Willumsen NJ (2006) Am Biotechnol Lab 24:20–21

    CAS  Google Scholar 

  11. Bridgland-Taylor MH, Hargreaves AC, Easter A, Orme A, Henthorn DC, Ding M, Davis AM, Small BG, Heapy CG, Abi-Gerges N, Persson F, Jacobson I, Sullivan M, Albertson N, Hammond TG, Sullivan E, Valentin JP, Pollard CE (2006) J Pharmacol Toxicol Methods 54:189–199

    Article  CAS  Google Scholar 

  12. Gleixner R, Fromherz P (2006) Biophys J 90:2600–2611

    Article  CAS  Google Scholar 

  13. Giaever I, Keese CR (1984) Proc Natl Acad Sci USA 81:3761–3764

    Article  CAS  Google Scholar 

  14. Lo CM, Keese CR, Giaever I (1995) Biophys J 69:2800–2807

    CAS  Google Scholar 

  15. Wegener J, Hakvoort A, Galla HJ (2000) Brain Res 853:115–124

    Article  CAS  Google Scholar 

  16. Weis R, Muller B, Fromherz P (1996) Phys Rev Lett 76:327–330

    Article  CAS  Google Scholar 

  17. Weis R, Fromherz P (1997) Phys Rev E 55:877–889

    Article  Google Scholar 

  18. Kiessling V, Muller B, Fromherz P (2000) Langmuir 16:3517–3521

    Article  CAS  Google Scholar 

  19. Braun D, Fromherz P (2004) Biophys J 87:1351–1358

    Article  CAS  Google Scholar 

  20. Potts JR, Campbell ID (1996) Matrix Biol 15:313–320

    Article  CAS  Google Scholar 

  21. Zhang Y, Chai C, Jiang XS, Teoh SH, Leong KW (2007) Mater Sci Eng C 27:213–219

    Article  CAS  Google Scholar 

  22. Ruoslahti E, Pierschbacher MD (1987) Science 238:491–497

    Article  CAS  Google Scholar 

  23. Wittmer CR, Phelps JA, Saltzman WM, Van Tassel PR (2007) Biomaterials 28:851–860

    Article  CAS  Google Scholar 

  24. Koenig AL, Gambillara V, Grainger DW (2003) J Biomed Mater Res 64A:20–37

    Article  CAS  Google Scholar 

  25. Miller T, Boettiger D (2003) Langmuir 19:1723–1729

    Article  CAS  Google Scholar 

  26. Pompe T, Kobe F, Salchert K, Jorgensen B, Oswald J, Werner C (2003) J Biomed Mater Res 67A:647–657

    Article  CAS  Google Scholar 

  27. Toworfe GK, Composto RJ, Adams CS, Shapiro IM, Ducheyne P (2004) J Biomed Mater Res 71A:449–461

    Article  CAS  Google Scholar 

  28. Kowalczynska HM, Nowak-Wyrzykowska M, Kolos R, Dobkowski J, Kaminski J (2005) J Biomed Mater Res 72A:228–236

    Article  CAS  Google Scholar 

  29. Ku Y, Chung CP, Jang JH (2005) Biomaterials 26:5153–5157

    Article  CAS  Google Scholar 

  30. Lan MA, Gersbach CA, Michael KE, Keselowsky BG, Garcia AJ (2005) Biomaterials 26:4523–4531

    Article  CAS  Google Scholar 

  31. Calonder C, Matthew HWT, Van Tassel PR (2005) J Biomed Mater Res 75A:316–323

    Article  CAS  Google Scholar 

  32. Lee MH, Ducheyne P, Lynch L, Boettiger D, Composto RJ (2006) Biomaterials 27:1907–1916

    Article  CAS  Google Scholar 

  33. Horn R, Marty A (1988) J Gen Physiol 92:145–159

    Article  CAS  Google Scholar 

  34. Strauss U, Herbrik M, Mix E, Schubert R, Rolfs T (2001) Pflügers Arch-Eur J Physiol 442:634–638

    Article  CAS  Google Scholar 

  35. Mayer M, Kriebel JK, Tosteson MT, Whitesides GM (2003) Biophys J 85:2684–2695

    Article  CAS  Google Scholar 

  36. Fuhr G, Müller T, Schnelle Th, Hagedorn R, Voigt A, Fiedler S, Arnold WM, Zimmermann U, Wagner B, Heuberger A (2005) Naturwissenschaften 81:528–535

    Article  Google Scholar 

  37. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) Nature 389:816–824

    Article  CAS  Google Scholar 

  38. Ren M, Yoshimura Y, Takeda N, Horibe S, Komatsu Y (2007) Science 316:758–761

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by NINS Cooperative Project Bio-molecular Sensor, and Grants-in-Aid for Scientific Research, Basic research (A) and Priority Area “Life Surveyor” promoted by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Urisu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urisu, T., Asano, T., Zhang, Z. et al. Incubation type Si-based planar ion channel biosensor. Anal Bioanal Chem 391, 2703–2709 (2008). https://doi.org/10.1007/s00216-008-1994-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1994-z

Keywords