Skip to main content
Log in

Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The study tested the determination of 300 pesticides in mineral water at levels of 0.1 and 1.0 μg/L. Measurements were conducted by direct sample injection into a liquid chromatograph coupled to a tandem mass spectrometer without any sample enrichment and/or cleanup. Two separate injections enabled the recording of two transitions per analyte (600 selected reaction monitoring transitions in total). For 285 analytes the sensitivity of direct sample injection (100 μL) was sufficient to quantify residues at 0.1 μg/L. All remaining pesticides were detected at 1.0 μg/L. Calibration functions were linear for more than 80% of analytes. Signal suppression or enhancement compared with signals in high-performance liquid chromatography water was equal to or smaller than 20% for 240 analytes. Even the largest matrix-induced suppression did not result in the disappearance of peaks. Combining the results of seven mineral waters, the relative standard deviation of “recovery” was 20% or less for 87% of the substances. A second transition for confirmatory purposes was often available. Consequently, the proposed direct injection of samples without any sample enrichment and/or cleanup is suitable for screening of many pesticides in mineral and drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pang GF, Cao YZ, Zhang JJ, Fan CL, Liu YM, Li XM, Jia GQ, Li ZY, Shi YQ, Wu YP, Guo TT (2006) J Chromatogr A 1125:1–30

    Article  CAS  Google Scholar 

  2. Hiemstra M, de Kok A (2007) J Chromatogr A 1154:3–25

    Article  CAS  Google Scholar 

  3. Pizzutti IR, de Kok A, Zanella R, Adaime MB, Hiemstra M, Wickert C, Prestes OD (2007) J Chromatogr A 1142:123–136

    Article  CAS  Google Scholar 

  4. Garcia-Reyes JF, Hernando MD, Molina-Diaz A, Fernandez-Alba AR (2007) Anal Chem 79:7308–7323

    Article  CAS  Google Scholar 

  5. Richardson SD (2007) Anal Chem 79:4295–4323

    Article  CAS  Google Scholar 

  6. Pico Y, Blasco C, Font G (2004) Mass Spectrom Rev 23:45–85

    Article  CAS  Google Scholar 

  7. Geerdink RB, Niessen WM, Brinkman UA (2002) J Chromatogr A 970:65–93

    Article  CAS  Google Scholar 

  8. Zwiener C, Frimmel FH (2004) Anal Bioanal Chem 378:851–861

    Article  CAS  Google Scholar 

  9. Reemtsma T (2003) J Chromatogr A 1000:477–501

    Article  CAS  Google Scholar 

  10. Bruzzoniti MC, Sarzanini C, Mentasti E (2000) J Chromatogr A 902:289–309

    Article  CAS  Google Scholar 

  11. Hogendoorn E, van Zoonen P (2000) J Chromatogr A 892:435–453

    Article  CAS  Google Scholar 

  12. Zwiener C, Frimmel FH (2004) Anal Bioanal Chem 378:862–874

    Article  CAS  Google Scholar 

  13. Ferrer I, Thurman EM (2007) J Chromatogr A 1175:24–37

    Article  CAS  Google Scholar 

  14. Alder L, Greulich K, Kempe G, Vieth B (2006) Mass Spectrom Rev 25:838–865

    Article  CAS  Google Scholar 

  15. Ingelse BA, van Dam RC, Vreeken RJ, Mol HG, Steijger OM (2001) J Chromatogr A 918:67–78

    Article  CAS  Google Scholar 

  16. European Council (1998) Off J Eur Communities 41:32–54

    Google Scholar 

  17. European Council (1991) Off J Eur Communities 1–32

  18. European Food Safety Authority (2007) Conclusions of the risk assessment on active substances which have undergone the peer review process at EU level. http://www.efsa.europa.eu/EFSA/ScientificPanels/PRAPER/efsa_locale-1178620753812_Conclusions494.htm

  19. Hwang YM, Wong YG, Ho WH (2005) J Assoc Off Anal Chem 88:1236–1241

    CAS  Google Scholar 

  20. Serodio P, Nogueira JM (2006) Water Res 40:2572–2582

    Article  CAS  Google Scholar 

  21. Ye Z, Weinberg HS, Meyer MT (2007) Anal Chem 79:1135–1144

    Article  CAS  Google Scholar 

  22. Bundesinstitut für Risikobewertung (2006) Complete acquisition parameter sets for positive electrospray. http://www.bfr.bund.de/cd/5831

  23. Bundesinstitut für Risikobewertung (2006) Fast multi residue screening of 300 pesticides in drinking water (report of study BfR-IX-2005, finalized: May 2006). http://www.bfr.bund.de/cd/5831

  24. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) J Am Soc Mass Spectrom 11:942–950

    Article  CAS  Google Scholar 

  25. Pang GF, Liu YM, Fan CL, Zhang JJ, Cao YZ, Li XM, Li ZY, Wu YP, Guo TT (2006) Anal Bioanal Chem 384:1366–1408

    Article  CAS  Google Scholar 

  26. Mol HG, Rooseboom A, van Dam R, Roding M, Arondeus K, Sunarto S (2007) Anal Bioanal Chem 389:1715–1754

    Article  CAS  Google Scholar 

  27. European Parliament and European Council (2001) Off J Eur Communities 44:1–5

    Google Scholar 

  28. Bossi R, Vejrup KV, Mogensen BB, Asman WAH (2002) J Chromatogr A 957:27–36

    Article  CAS  Google Scholar 

  29. Volmer DA, Hui JP (1998) Arch Environ Contam Toxicol 35:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marilyn Menden and Volker Happel for their important technical assistance throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Greulich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greulich, K., Alder, L. Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS. Anal Bioanal Chem 391, 183–197 (2008). https://doi.org/10.1007/s00216-008-1935-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1935-x

Keywords

Navigation