Skip to main content
Log in

Detection of low-abundance impurities in synthetic thyroid hormones by stationary phase optimized liquid chromatography–mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The transfer of a gradient method to an isocratic or multistep gradient method employing stationary phase optimized liquid chromatography facilitated a reduction in analysis time by 50% and significantly improved the mass spectrometric detectability of impurities in synthetic thyroid hormones. Four column segments packed with different stationary phases were combined into a single chromatographic column, which allowed the separation and photometric as well as mass spectrometric detection of thyroid compounds in less than 30 min under isocratic- or step gradient elution conditions with 0.10% acetic acid/acetonitrile. Signal instability and baseline drift during detection by negative electrospray ionization time-of-flight mass spectrometry were minimized by optimizing the spray parameters for each individual elution step. This resulted in improved detectabilities and higher mass spectral quality, especially for low-abundance components in the sample mixture. The method was applied to the separation and detection of the low-abundance impurities formed upon the thermal stressing of a sample of synthetic levothyroxine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Zhang J, Lazar MA (2000) Annu Rev Physiol 62:439–466

    Article  CAS  Google Scholar 

  2. Escobar-Morreale HF, Botella-Carretero JI, Escobar del Rey F, Morreale de Escobar G (2005) J Clin Endocrinol Metab 90:4946–4954

    Article  CAS  Google Scholar 

  3. Chalmers JR, Dickson GT, Elks J, Hems BA (1949) J Chem Soc 3424–3433

  4. Hillmann G (1956) Z Naturforsch 11b:419–420

    CAS  Google Scholar 

  5. Nahm H, Siedel W (1963) Chem Ber 96:1–9

    Article  CAS  Google Scholar 

  6. Salamonczyk GM, Oza VB, Sih CJ (1997) Tetrahedron Lett 38:6965–6968

    Google Scholar 

  7. Andre M, Domanig R, Riemer E, Moser H, Groeppelin A (1996) J Chromatogr A 725:287–294

    Article  CAS  Google Scholar 

  8. Gika H, Lämmerhofer M, Papadoyannis I, Lindner W (2004) J Chromatogr B 800:193–201

    Article  CAS  Google Scholar 

  9. Kannamkumarath SS, Wuilloud RG, Stalcup A, Caruso JA, Patel H, Sakr A (2004) J Anal Atom Spectrosc 19:107–113

    Google Scholar 

  10. Kirkland JJ, Glajch JL (1983) J Chromatogr 255:27–39

    Article  CAS  Google Scholar 

  11. Schoenmakers PJ (1986) Optimiation of chromatographic selectivity. Elsevier, Amsterdam

    Google Scholar 

  12. Zhao J, Carr PW (1999) Anal Chem 71:2623–2632

    Article  CAS  Google Scholar 

  13. Dolan JW, Snyder LR, Blanc T, Van Heukelem L (2000) J Chromatogr A 897:37–50

    Article  CAS  Google Scholar 

  14. Kromidas S (2006) HPLC made to measure a practical handbook for optimization. Wiley-VCH, Weinheim

    Google Scholar 

  15. Nyiredy SZ (2002) J Chromatogr Sci 40:553–563

    CAS  Google Scholar 

  16. Nyiredy SZ, Dallenbach-Toelke K, Sticher O (1989) J Liq Chromatogr 12:95–116

    Article  CAS  Google Scholar 

  17. Snyder LR (1978) J Chromatogr Sci 223

  18. Kirkland JJ, Glajch JL (1983) J Chromatogr 255:27–39

    Article  CAS  Google Scholar 

  19. Nyiredy SZ, Dallenbach-Toelke K, Sticher O (1988) J Planar Chromatogr 1:336–342

    CAS  Google Scholar 

  20. Glajch JL, Gluckman JC, Charikofsky JG, Minor JM, Kirkland JJ (1985) J Chromatogr 318:23–39

    Article  CAS  Google Scholar 

  21. Welsch T, Dornberger U, Lerche D (1993) J High Res Chromatogr 16:18–26

    Article  CAS  Google Scholar 

  22. Mao Y, Carr PW (2000) Anal Chem 72:2788–2796

    Article  CAS  Google Scholar 

  23. Mao Y, Carr PW (2000) Anal Chem 72:110–118

    Article  CAS  Google Scholar 

  24. Bonn GK (1985) J Chromatogr 322:411–424

    Article  CAS  Google Scholar 

  25. Bischoff K, Nyiredy SZ, Szücs Z (2006) Elements for separating substances by distributing between a stationary and a mobile phase, and method for the production of a separating device. WO/2006/125564; PCT/EP2006/004744

  26. Nyiredy SZ, Szucs Z, Szepesy L (2007) J Chromatogr A 1157:122–130

    Article  CAS  Google Scholar 

  27. Nyiredy SZ, Szucs Z, Szepesy L (2006) Chromatographia 63:S3–S9

    Article  CAS  Google Scholar 

  28. Kazemifard AG, Moore DE, Aghazadeh A (2001) J Pharm Biomed Anal 25:697–711

    Article  CAS  Google Scholar 

  29. Toussaint B, Schimmel H, Klein CL, Wiergowski M, Emons H (2007) J Chromatogr A 1156:236–248

    Article  CAS  Google Scholar 

  30. Zhou S, Hamburger M (1996) J Chromatogr A 755:189–204

    Article  CAS  Google Scholar 

  31. Dams R, Benijts T, Gunther W, Lambert W, De Leenheer A (2002) Rapid Commun Mass Spectrom 11:1072–1077

    Article  Google Scholar 

  32. Neue UD, O’Gara JE, Mendez A (2006) J Chromatogr A 1127:161–174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by Bischoff Analysentechnik und -geräte GmbH (Leonberg, Germany) and helpful discussions with K. Bischoff and S. Lamotte are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian G. Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gostomski, I., Braun, R. & Huber, C.G. Detection of low-abundance impurities in synthetic thyroid hormones by stationary phase optimized liquid chromatography–mass spectrometry. Anal Bioanal Chem 391, 279–288 (2008). https://doi.org/10.1007/s00216-008-1920-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1920-4

Keywords

Navigation