Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques

Abstract

There is a critical need for a rapid and sensitive means of detecting viruses. Recent reports from our laboratory have shown that surface-enhanced Raman spectroscopy (SERS) can meet these needs. In this study, SERS was used to obtain the Raman spectra of respiratory syncytial virus (RSV) strains A/Long, B1, and A2. SERS-active substrates composed of silver nanorods were fabricated using an oblique angle vapor deposition method. The SERS spectra obtained for each virus were shown to posses a high degree of reproducibility. Based on their intrinsic SERS spectra, the four virus strains were readily detected and classified using the multivariate statistical methods principal component analysis (PCA) and hierarchical cluster analysis (HCA). The chemometric results show that PCA is able to separate the three virus strains unambiguously, whereas the HCA method was able to readily distinguish an A2 strain-related G gene mutant virus (ΔG) from the A2 strain. The results described here demonstrate that SERS, in combination with multivariate statistical methods, can be utilized as a highly sensitive and rapid viral identification and classification method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Barenfanger J, Drake N, Leon N, Mueller T, Troutt T (2000) J Clin Microbiol 38:2824–2828

    CAS  Google Scholar 

  2. 2.

    O’Shea MK, Ryan MAK, Hawksworth AW, Alsip BJ, Gray GC (2005) Clin Infect Dis 41:311–317

    Article  Google Scholar 

  3. 3.

    Henkel JH, Aberle SW, Kundi M, Popow-Kraupp T (1997) J Med Virol 53:366–371

    Article  CAS  Google Scholar 

  4. 4.

    Ilic B, Yang Y, Craighead HG (2004) Appl Phys Lett 85:2604–2606

    Article  CAS  Google Scholar 

  5. 5.

    Donaldson KA, Kramer MF, Lim DV (2004) Biosens Bioelectron 20:322–327

    Article  CAS  Google Scholar 

  6. 6.

    Zheng YZ, Hyatt A, Wang LF, Eaton BT, Greenfield PF, Reid S (1999) J Virol Methods 80:1–9

    Article  CAS  Google Scholar 

  7. 7.

    Kuznetsov YG, Daijogo S, Zhou J, Semler BL, McPherson A (2005) J Mol Biol 347:41–52

    Article  CAS  Google Scholar 

  8. 8.

    Long DA (1977) Raman spectroscopy. McGraw-Hill, New York

    Google Scholar 

  9. 9.

    Carey PR (1982) Biochemical applications of raman and resonance Raman spectroscopies. Academic, New York

    Google Scholar 

  10. 10.

    Moskovits M (2005) J Raman Spectrosc 36:485–496

    Article  CAS  Google Scholar 

  11. 11.

    Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463–9483

    Article  CAS  Google Scholar 

  12. 12.

    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  13. 13.

    Xu H, Bjerneld J, Käll M, Börjesson L (1999) Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  14. 14.

    Grow AE, Wood LL, Claaycomb JL, Thompson PA (2003) J Microbiol Methods 53:221–233

    Article  CAS  Google Scholar 

  15. 15.

    Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD (2005) Appl Spectrosc 29:1222–1228

    Article  Google Scholar 

  16. 16.

    Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LK (2005) J Phys Chem B 109:312–320

    Article  CAS  Google Scholar 

  17. 17.

    Zeiri L, Bronk BV, Shabtai Y, Czege J, Efrima S (2002) Colloids Surf A 208:357–362

    Article  CAS  Google Scholar 

  18. 18.

    Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA (2006) Nano Lett 6:2630–2636

    Article  CAS  Google Scholar 

  19. 19.

    Bao P-D, Huang T-Q, Liu X-M, Wu T-Q (2001) J Raman Spectrosc 32:227–230

    Article  CAS  Google Scholar 

  20. 20.

    Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Neill JD, Ridpath JF (2005) Anal Chem 77:6147–6154

    Article  CAS  Google Scholar 

  21. 21.

    Chaney SB, Shanmukh S, Zhao Y-P, Dluhy RA (2005) Appl Phys Lett 87:31908–31910

    Article  Google Scholar 

  22. 22.

    Zhao Y-P, Chaney SB, Shanmukh S, Dluhy RA (2006) J Phys Chem B 110:3153–3157

    Article  CAS  Google Scholar 

  23. 23.

    Tripp RA, Moore D, Jones L, Sullender W, Winter J, Anderson LJ (1999) J Virol 73:7099–7107

    CAS  Google Scholar 

  24. 24.

    Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a practical guide. Wiley, New York

    Google Scholar 

  25. 25.

    Lavine BK (2006) Practical guide to chemometrics. CRC, Boca Raton

    Google Scholar 

  26. 26.

    Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, Chichester

    Google Scholar 

  27. 27.

    Jarvis RM, Brooker A, Goodacre R (2004) Anal Chem 76:5198–5202

    Article  CAS  Google Scholar 

  28. 28.

    Pearman WF, Fountain AW (2006) Appl Spectrosc 60:356–365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this research was partially provided through the U.S. Army Research Laboratory through Cooperative Agreement W911NF-07-2-0065, National Science Foundation under the contract No. ECS-0304340, and the Georgia Research Alliance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. A. Dluhy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shanmukh, S., Jones, L., Zhao, YP. et al. Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Anal Bioanal Chem 390, 1551–1555 (2008). https://doi.org/10.1007/s00216-008-1851-0

Download citation

Keywords

  • Virus
  • SERS
  • Detection
  • RSV
  • Multivariate statistics
  • Nanorod