Skip to main content
Log in

Modulation of mobile phase composition in flow-injection/sequential-injection chromatography exploiting multisyringe flow analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a time-based multicommutated flow system is proposed for appropriate selection and modulation of mobile phase composition in flow-injection (FI)/sequential-injection (SI) chromatography. The novel flow assembly involves the on-line coupling of a short monolithic reversed-phase chromatographic column with a multisyringe flow injection set-up furnished with a set of solenoid valves. The proposed hyphenated technique was applied to the simultaneous spectrophotometric determination of thiamine (B1), pyridoxine (B6) and cyanocobalamin (B12) which were taken as model analytes. The separation method capitalizes on a dual isocratic elution protocol involving the use of a single forward stroke of the multisyringe pump for initial delivery of 50 mmol L−1 ammonium acetate (pH 7.0) for 2.4 min followed by 50 mmol L−1 ammonium acetate–methanol (80:20, v/v) for 6.4 min at 0.5 mL min−1 and room temperature. Detection was performed at the maximum wavelength for each target vitamin—280 nm for B1, 325 nm for B6, and 360 nm for B12. A first-order, two-level full-factorial design was utilized to ascertain the significant variables influencing the chromatographic separation and the magnitude of the interaction effects. The experimental design method revealed that resolution of the target vitamins is highly dependent on the pH, percentage of organic modifier, and their second-order interaction. The multisyringe flow-injection-based monolithic column separation method, which should be viewed as an expeditious and cost-effective alternative to the high-performance liquid chromatography counterpart, was applied to the separation and determination of B1, B6, and B12 in different pharmaceutical dosage forms in less than 9 min. Statistical comparison of the results from the proposed procedure with those from the HPLC method endorsed by the US Pharmacopeia revealed there were no significant differences at the 95 % confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chatzimichalakis PF, Samanidou VF, Verpoorte R, Papadoyannis IN (2004) J Sep Sci 27:1181

    Article  CAS  Google Scholar 

  2. Marszałł ML, Lebiedzińska A, Czarnowski W, Szefer P (2005) J Chromatogr A 1094:91

    Article  Google Scholar 

  3. Delgado-Zamarreño MM, González-Maza I, Sánchez-Pérez A, Carabias-Martínez R (2002) J Chromatogr A 953:257

    Article  Google Scholar 

  4. Buskov S, Møller P, Sørensen H, Sørensen JC, Sørensen S (1998) J Chromatogr A 802:233

    Article  CAS  Google Scholar 

  5. Blanco-Gomis D, Laviana-González L, Gutiérrez-Álvarez D (1999) Anal Chim Acta 396:55

    Article  Google Scholar 

  6. Hu Q, Zhou T-S, Zhang L, Li H, Fang Y-Z (2001) Anal Chim Acta 437:123

    Article  CAS  Google Scholar 

  7. Ghorbani AR, Momenbeik F, Khorasani JH, Amini MK (2004) Anal Bioanal Chem 379:439

    Article  CAS  Google Scholar 

  8. Monferrer-Pons L, Capella-Peiró ME, Gil-Agustí M, Esteve-Romero J (2003) J Chromatogr A 984:223

    Article  CAS  Google Scholar 

  9. Moreno P, Salvadó V (2000) J Chromatogr A 870:207

    Article  CAS  Google Scholar 

  10. Heudi O, Kilinç T, Fontannaz P (2005) J Chromatogr A 1070:49

    Article  CAS  Google Scholar 

  11. El-Gindy A, El-Yazby F, Mostafa A, Maher MM (2004) J Pharm Biomed Anal 35:703

    Article  CAS  Google Scholar 

  12. Markopoulou CK, Kagladis KA, Koundourellis JE (2002) J Pharm Biomed Anal 30:1403

    Article  CAS  Google Scholar 

  13. Li H-B, Chen F (2001) J Sep Sci 24:271–274

    Article  CAS  Google Scholar 

  14. Cho CM, Ko JH, Cheong WJ (2000) Talanta 51:799

    Article  CAS  Google Scholar 

  15. S. Levin, Gradient Operation in HPLC at http://www.forumsci.co.il/HPLC/3gradient_handouts.pdf

  16. Albalá-Hurtado S, Veciana-Nogués MT, Izquierdo-Pulido M, Mariné-Font A (1997) J Chromatogr A 778:247

    Article  Google Scholar 

  17. Mapihan KL, Vial J, Jardy A (2004) J Chromatogr A 1030:135

    Article  Google Scholar 

  18. Li L-S, Da S-L, Feng Y-Q, Liu M (2004) Talanta 64:373

    Article  CAS  Google Scholar 

  19. Cabrera K (2004) J Sep Sci 27:843

    Article  CAS  Google Scholar 

  20. Kobayashi H, Ikegami T, Kimura H, Hara T, Tozuda D, Tanaka N (2006) Anal Sci 22:491

    Article  CAS  Google Scholar 

  21. Šatínský D, Solich P, Chocholouš P, Karlícek R (2003) Anal Chim Acta 499:205

    Article  Google Scholar 

  22. González-San Miguel HM, Alpízar-Lorenzo JM, Cerdà-Martín V (2007) Talanta 72:296

    Article  Google Scholar 

  23. Paull B, Nesterenko PN (2005) TrAC-Trends Anal Chem 24:295

    Article  CAS  Google Scholar 

  24. García-Jiménez JF, Valencia MC, Capitán-Vallvey LF (2007) Anal Chim Acta 594:226

    Article  Google Scholar 

  25. Chocholouš P, Solich P, Šatínský D (2007) Anal Chim Acta 600:129

    Google Scholar 

  26. Solich P, Polášek M, Klimundová J, Ruzicka J (2003) Trends Anal Chem 22:116

    Google Scholar 

  27. Pimenta AM, Montenegro MCBS, Araújo AN, Martínez-Calatayud J (2006) J Pharm Biomed Anal 40:16

    Article  CAS  Google Scholar 

  28. Šatínský D, Chocholouš P, Salabová M, Solich P (2006) J Sep Sci 29:2494

    Article  Google Scholar 

  29. Šatínský D, Huclová J, Solich P, Karlícek R (2003) J Chromatogr A 1015:239–244

    Article  Google Scholar 

  30. Huclová J, Šatínský D, Karlícek R (2003) Anal Chim Acta 494:133

    Article  Google Scholar 

  31. Šatínský D, Dos Santos LML, Sklenářová H, Solich P, Montenegro MCBSM, Araújo AN (2005) Talanta 68:214

    Article  Google Scholar 

  32. Šatínský D, Huclová J, Ferreira RLC, Montenegro MCBSM, Solich P (2006) J Pharm Biomed Anal 40:287

    Article  Google Scholar 

  33. Chocholouš P, Šatínský D, Solich P (2006) Talanta 70:408

    Article  Google Scholar 

  34. Adcock JL, Francis PS, Agg KM, Marshall GD, Barnett NW (2007) Anal Chim Acta 600:136

    Google Scholar 

  35. Miró M, Cerdà V, Estela JM (2002) Trends Anal Chem 21:199

    Article  Google Scholar 

  36. Segundo MA, Magalhães LM (2006) Anal Sci 22:3

    Article  CAS  Google Scholar 

  37. Horstkotte B, Elsholz O, Cerdà V (2005) J Flow Injection Anal 22:22

    Google Scholar 

  38. US-Pharmacopeia and National Formulary (USP 24/NF 19) U.S. Pharmacopoeial Convention, Inc., Rockville, MD, 2000

  39. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: part A. Elsevier, Amsterdam, pp 659–682, chap. 22

    Google Scholar 

  40. Fernández-Cárdenas T, González-San Miguel HM, Travieso L (2001) Ars Pharmaceutica 42:171–183

    Google Scholar 

  41. González-San Miguel HM, Alpízar-Lorenzo JM, Cerdà-Martín V (2007) Anal Bioanal Chem 387:663–671

    Article  Google Scholar 

  42. Thompson M, Ellison SLR, Wood R (2002) Pure Appl Chem 74:835

    Article  CAS  Google Scholar 

  43. International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use, ICH harmonized tripartite guideline. Validation of analytical procedures: Text and Methodology, Q2(R1), November 2005. Available at http://www.ich.org/LOB/media/MEDIA417.pdf

  44. Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry, person education Ltd, Harlow, pp 121–124, ch. 5

  45. De Ritter E (1982) J Pharm Sci 71(10):1073

    Article  Google Scholar 

  46. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics: part A. Elsevier, Amsterdam, pp 93–97, chap. 5

    Google Scholar 

Download references

Acknowledgements

Manuel Miró is indebted to the Conselleria d’Economia, Hisenda i Innovació from the Government of the Balearic Islands (CAIB) for supporting the project PROGECIB-1A. He also extends his appreciation to the Direcció General de Recerca, Desenvolupament Tecnològic i Innovació de la CAIB for allocation of a “Research Special Action”. The authors are grateful to the Ministerio de Ciencia y Tecnología (Spain) for financial support through projects CTQ-2004-01201 and CTQ2004-03256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Cerdà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, M., Miró, M., González, H.M. et al. Modulation of mobile phase composition in flow-injection/sequential-injection chromatography exploiting multisyringe flow analysis. Anal Bioanal Chem 391, 817–825 (2008). https://doi.org/10.1007/s00216-008-1848-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1848-8

Keywords

Navigation