Skip to main content

Development and trends of biosurfactant analysis and purification using rhamnolipids as an example

Abstract

During the last few decades, increasing interest in biological surfactants led to an intensification of research for the cost-efficient production of biosurfactants compared with traditional petrochemical surface-active components. The quest for alternative production strains also is associated with new demands on biosurfactant analysis. The present paper gives an overview of existing analytical methods, based on the example of rhamnolipids. The methods reviewed range from simple colorimetric testing to sophisticated chromatographic separation coupled with detection systems like mass spectrometry, by means of which detailed structural information is obtained. High-performance liquid chromatography (HPLC) coupled with mass spectrometry currently presents the most precise method for rhamnolipid identification and quantification. Suitable approaches to accelerate rhamnolipid quantification for better control of biosurfactant production are HPLC analysis directly from culture broth by adding an internal standard or Fourier transform infrared attenuated total reflectance spectroscopy measurements of culture broth as a possible quasi-online quantification method in the future. The search for alternative rhamnolipid-producing strains makes a structure analysis and constant adaptation of the existing quantification methods necessary. Therefore, simple colorimetric tests based on whole rhamnolipid content can be useful for strain and medium screening. Furthermore, rhamnolipid purification from a fermentation broth will be considered depending on the following application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ATR:

attenuated total reflectance

CTAB:

cetyltrimethylammonium bromide

ELSD:

evaporative light scattering detection

FTIR:

fourier transform infrared

GC:

gas chromatography

HPLC:

high-performance liquid chromatography

IR:

infrared

MRM:

multiple reaction monitoring

MS:

mass spectrometry

MSMS:

tandem mass spectrometry

NMR:

nuclear magnetic resonance

PI:

pseudomolecular ions

TLC:

thin-layer chromatography

References

  1. Lang S (2002) Curr Opin Colloid Interface Sci 7:12

    Article  CAS  Google Scholar 

  2. Lin S-C (1996) J Chem Technol Biotechnol 66:109

    Article  CAS  Google Scholar 

  3. Nitschke M, Costa SGVAO, Contiero J (2005) Biotechnol Prog 21:1593

    Article  CAS  Google Scholar 

  4. Soberón-Chávez G, Lépine F, Déziel E (2005) Appl Microbiol Biotechnol 68:718

    Article  CAS  Google Scholar 

  5. Desai JD, Banat IM (1997) Microbiol Mol Biol Rev 61:47

    CAS  Google Scholar 

  6. Banat IM, Makkar RS, Cameotra SS (2000) Appl Microbiol Biotechnol 53:495

    Article  CAS  Google Scholar 

  7. Kitamoto D, Isoda H, Nakahara T (2002) J Biosci Bioeng 94:187

    Article  CAS  Google Scholar 

  8. Lang S, Wullbrandt D (1999) Appl Microbiol Biotechnol 51:22

    Article  CAS  Google Scholar 

  9. Fiechter A (1992) Trends Biotechnol 10:208

    Article  CAS  Google Scholar 

  10. Maier RM, Soberon-Chavez G (2000) Appl Microbiol Biotechnol 54:625

    Article  CAS  Google Scholar 

  11. Mulligan CN, Gibbs BF (1990) J Chem Technol Biotechnol 47:23

    CAS  Article  Google Scholar 

  12. Van Hamme JD, Singh A, Ward OP (2006) Biotechnol Adv 24:604

    Article  CAS  Google Scholar 

  13. Fiechter A (1992) Pure Appl Chem 64:1739

    Article  CAS  Google Scholar 

  14. Davey ME, Caiazza NC, O’Toole GA (2003) J Bacteriol 185:1027

    Article  CAS  Google Scholar 

  15. Caiazza NC, Shanks RMQ, O’Toole GA (2005) J Bacteriol 187:7351

    Article  CAS  Google Scholar 

  16. Deziel E, Lepine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Biochim Biophys Acta 1440:244

    CAS  Google Scholar 

  17. Haba E, Pinazo P, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Biotechnol Bioeng 81:316

    Article  CAS  Google Scholar 

  18. Gunther NW, Nunez A, Fett W, Solaiman DKY (2005) Appl Environ Microbiol 71:2288

    Article  CAS  Google Scholar 

  19. Chandrasekaran EV, BeMiller JN (1980) In: Whistler RL (ed) Methods in carbohydrate chemistry, vol 8. Academic., New York, p 89

    Google Scholar 

  20. Deziel E, Lepine F, Milot S, Villemur R (2000) Biochim Biophys Acta 1485:145

    CAS  Google Scholar 

  21. Itoh S, Honda H, Tomita F, Suzuki T (1971) J Antibiot 24:855

    CAS  Google Scholar 

  22. Haussler S, Nimtz M, Domke T, Wray V, Steinmetz I (1998) Infect Immun 66:1588

    CAS  Google Scholar 

  23. Tuleva BK, Ivanov GR, Christova NE (2002) Z Naturforsch C 57:356

    CAS  Google Scholar 

  24. Howe J, Bauer J, Andra J, Schromm AB, Ernst M, Rossle M, Zahringer U, Rademann J, Brandenburg K (2006) FEBS J 273:5101

    Article  CAS  Google Scholar 

  25. Guerra-Santos L, Käppeli O, Fiechter A (1984) Appl Environ Microbiol 48:301

    CAS  Google Scholar 

  26. Emons H, Werner G, Haferburg D, Kleber H-P (1989) Electroanalysis 1:555

    Article  CAS  Google Scholar 

  27. Zhang YM, Miller RM (1992) Appl Environ Microbiol 58:3276

    CAS  Google Scholar 

  28. Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O, Fiechter A (1986) Appl Environ Microbiol 51:985–989

    CAS  Google Scholar 

  29. Ochoa-Loza FJ, Noordman WH, Jannsen DB, Brusseau ML, Maier RM (2007) Chemosphere 66:1634

    Article  CAS  Google Scholar 

  30. Siegmund I, Wagner F (1991) Biotechnol Tech 5:265

    Article  CAS  Google Scholar 

  31. Johnson MK, Boese-Marrazzo D (1980) Infect Immun 29:1028

    CAS  Google Scholar 

  32. Perfumo A, Banat I, Canganella F, Marchant R (2006) Appl Microbiol Biotechnol 72:132

    Article  CAS  Google Scholar 

  33. Helbert JR, Brown KD (1957) Anal Chem 29:1464

    Article  CAS  Google Scholar 

  34. Hodge JE, Hofreiter BT (1962) In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry, vol 1. Academic., New York, p 380

    Google Scholar 

  35. Noordman WH, Brusseau ML, Janssen DB (2000) Environ Sci Technol 34:832

    Article  CAS  Google Scholar 

  36. Fox JD, Robyt JF (1991) Anal Biochem 195:93

    Article  CAS  Google Scholar 

  37. Koch AK, Käppeli O, Fiechter A, Reiser J (1991) J Bacteriol 173:4212

    CAS  Google Scholar 

  38. Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araujo JM, Mitchell DA, Ramos LP, Krieger N (2007) Chem Phys Lipids 147:1

    Article  CAS  Google Scholar 

  39. Bosch M-P, Parra JL, Manresa M-A, Ventura F, Rivera J (1989) Biol Mass Spectrom 18:1046

    Article  CAS  Google Scholar 

  40. Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole PJ (1990) Biochim Biophys Acta 1045:189

    CAS  Google Scholar 

  41. Syldatk C (1984) Mikrobielle Bildung und Charakterisierung grenzflächenaktiver Rhamnolipide aus Pseudomonas spec. DSM 2874. TU Braunschweig, Braunschweig

  42. de Koster CG, Vos B, Versluis C, Heerma W, Haverkamp J (1994) Biol Mass Spectrom 23:179

    Article  Google Scholar 

  43. Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Can J Microbiol 39:1071

    Article  Google Scholar 

  44. Mata-Sandoval JC, Karns J, Torrents A (1999) J Chromatogr A 864:211

    Article  CAS  Google Scholar 

  45. Arino S, Marchal R, Vandecasteele J-P (1996) Appl Microbiol Biotechnol 45:162

    Article  CAS  Google Scholar 

  46. Schenk T, Schuphan I, Schmidt B (1995) J Chromatogr A 693:7

    Article  CAS  Google Scholar 

  47. Lépine F, Déziel E, Milot S, Villemur R (2002) J Mass Spectrom 37:41

    Article  CAS  Google Scholar 

  48. Trummler K, Effenberger F, Syldatk C (2003) Eur J Lipid Sci Technol 105:563

    Article  CAS  Google Scholar 

  49. Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Antonie Van Leeuwenhoek 85:1

    Article  CAS  Google Scholar 

  50. Borgund AE, Erstad K, Barth T (2007) J Chromatogr A 1149:189

    Article  CAS  Google Scholar 

  51. Gartshore J, Lim YC, Cooper DG (2000) Biotechnol Lett 22:169

    Article  CAS  Google Scholar 

  52. Choe B-Y, Krishna NR, Pritchard DG (1992) Magn Reson Chem 30:1025

    Article  CAS  Google Scholar 

  53. Tahzibi A, Kamal F, Assadi MM (2004) Iran Biomed J 8:25

    CAS  Google Scholar 

  54. Wei Y-H, Chou C-L, Chang J-S (2005) Biochem Eng J 27:146

    Article  CAS  Google Scholar 

  55. Jarvis FG, Johnson MJ (1949) J Am Chem Soc 71:4124

    Article  CAS  Google Scholar 

  56. Manso Pajarron A, Koster CG, Heerma W, Schmidt M, Haverkamp J (1993) Glycoconj J 10:219

    Article  CAS  Google Scholar 

  57. Matulovic U (1987) Verfahrensentwicklung zur Herstellung grenzflächenaktiver Rhamnolipide mit immobilisierten Zellen von Pseudomonas spec. DSM 2874. TU Braunschweig, Braunschweig

  58. Gruber T (1991) Verfahrenstechnische Aspekte der kontinuierlichen Produktion von Biotensiden am Beispiel der Rhamnolipide. PhD thesis, University of Stuttgart

  59. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Langmuir 17:1367

    Article  CAS  Google Scholar 

  60. Dubey KV, Juwarkar AA (2005) Biotechnol Prog 21:860

    Article  CAS  Google Scholar 

  61. Matsufuji M, Nakata K, Yoshimoto A (1997) Biotechnol Lett 19:1213

    Article  CAS  Google Scholar 

  62. Sanchez M, Aranda F, Espuny MJ, Marques A, Teruel JA, Manresa A, Ortiz A (2007) J Colloid Interface Sci 307:246

    Article  CAS  Google Scholar 

  63. Mulligan CN, Mahmourides G, Gibbs BF (1989) J Biotechnol 12:37

    Article  CAS  Google Scholar 

  64. Helvaci SS, Peker S, Ozdemir G (2004) Colloids Surf B 35:225

    Article  CAS  Google Scholar 

  65. Ozdemir G, Peker S, Helvaci SS (2004) Colloids Surf A 234:135

    Article  CAS  Google Scholar 

  66. Sim L, Ward OP, Li Z-Y (1997) J Ind Microbiol Biotechnol 19:232

    Article  CAS  Google Scholar 

  67. Brown AK, Kaul A, Varley J (1999) Biotechnol Bioeng 62:278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Berensmeier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heyd, M., Kohnert, A., Tan, TH. et al. Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391, 1579–1590 (2008). https://doi.org/10.1007/s00216-007-1828-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1828-4

Keywords

  • Rhamnolipids
  • Glycolipids
  • Biosurfactants
  • Pseudomonas aeruginosa
  • Analysis
  • Purification