Skip to main content
Log in

Application of FTIR spectra for evaluating interfacial reactions in metal matrix composites

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Manufacturing of Saffil/MgLi metal matrix composites by the melt infiltration process is accompanied by extensive interfacial redox reaction between δ-Al2O3 fibers (Saffil) and lithium. The present paper deals with the Fourier transform infrared spectroscopy examination of Saffil fibers isolated from Mg–8 wt% Li alloy by the bromine/methylacetate agent focusing on the insertion of Li+ ions into δ-Al2O3 and their influence on water adsorption. Insertion of Li+ into δ-Al2O3 is monitored by gradual change of Al–O stretching bands (400–900 cm−1) towards more simple patterns of a spinel-like product assigned as δ(Li) which transforms to LiAl5O8 during subsequent annealing. Rapid increase in the water adsorption with increase in Li content, indicated by the changes in H–O–H bending (about 1,650 cm−1) and O–H stretching (about 3,500 cm−1), is connected with the ionicity of the δ(Li) phase, which attracts polar water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mason JF, Warwick CM, Smith PJ, Charles JA, Clyne TW (1989) J Mater Sci 24:3934–3946

    Article  CAS  Google Scholar 

  2. Kúdela S, Gergely V, Schweighofer A, Baunack S, Oswald S, Wetzig K (1994) J Mater Sci 29:5071–5077

    Article  Google Scholar 

  3. Kúdela S, Wendrock H, Kúdela S Jr, Ptáček L, Menzel S, Wetzig K (2005) Mater Sci Forum 482:355–358

    Google Scholar 

  4. Kúdela S, Gergely V, Smrčok L, Oswald S, Baunack S, Wetzig K (1996) J Mater Sci 31:1595–1602

    Article  Google Scholar 

  5. Kúdela S, Rennekamp R, Baunack S, Gergely V, Oswald S, Wetzig K (1997) Microchim Acta 127:243–252

    Article  Google Scholar 

  6. Kúdela S, Gergely V, Baunack S, John A, Oswald S, Wetzig K (1997) J Mater Sci 32:2155–2162

    Article  Google Scholar 

  7. Kúdela S, Oswald S, Kúdela S Jr, Baunack S, Wetzig K (2000) Microchim Acta 133:29–34

    Article  Google Scholar 

  8. Kúdela S, Oswald S, Kúdela S Jr, Baunack S, Wetzig K (2004) J Alloys Compd 378:127–131

    Article  CAS  Google Scholar 

  9. Clyne TW, Bader MG, Capplemann GR, Hubert PA (1985) J Mater Sci 20:85–96

    Article  CAS  Google Scholar 

  10. Watawe SC, Sutar BD, Sarwade BD, Chougule BK (2001) Int J Inorg Mater 3:819–823

    Article  CAS  Google Scholar 

  11. Rao KJ, Benqlilou-Moudden H, Desbat B, Vinatier P, Levasseur A (2002) J Solid State Chem 165:42–47

    Article  CAS  Google Scholar 

  12. Lippens BC, De Boer JH (1964) Acta Crystallogr 17:1312–1321

    Article  CAS  Google Scholar 

  13. Wilson SJ, McConnell JDC (1980) J Solid State Chem 34:315–322

    Article  CAS  Google Scholar 

  14. Mardilovich PP, Trokhimets AI, Zaretskii MV (1984) Zh Prikl Spektrosk 40:409–412

    Google Scholar 

  15. Stegmann M-C, Vivien D, Mazieres C (1974) J Chim Phys 71:761–764

    CAS  Google Scholar 

  16. Tarte P (1967) Spectrochim Acta Part A 23:2127–2143

    Article  CAS  Google Scholar 

  17. Lejus A-M, Collongues R (1962) C R Acad Sci 254:2005–2007

    CAS  Google Scholar 

  18. Kutty TRN, Nayak M (1998) J Alloys Compd 269:75–87

    Article  CAS  Google Scholar 

  19. Datta RK, Roy R (1963) J Am Ceram Soc 46:388–390

    Article  CAS  Google Scholar 

  20. Hafner S, Laves F (1961) Z Kristallogr 115:321–335

    Article  CAS  Google Scholar 

  21. Julien C (2000) Solid State Ionics (2000) 136–137:887–896

  22. Tsyganenko AA, Smirnov KS, Rzhevskij AM, Mardilovich PP (1990) Mater Chem Phys 26:35–45

    Article  CAS  Google Scholar 

  23. Peri JB, Hannan RB (1960) J Phys Chem 64:1526–1530

    Article  CAS  Google Scholar 

  24. Repelin Y, Husson E (1990) Mater Res Bull 25:611–621

    Article  CAS  Google Scholar 

  25. Dokhale PA, Sali ND, Kumar PM, Bhoraskar SV, Rohatgi VK, Bhoraskar VN, Date SK, Badrinarayanan S (1997) Mater Sci Eng B 49:18–26

    Article  Google Scholar 

  26. Saniger JM (1995) Mater Lett 22:109–113

    Article  CAS  Google Scholar 

  27. Paglia G, Buckley CE, Udovic CJ, Rohl AL, Jones F, Maitland CF, Connolly J (2004) Chem Mater 16:1914–1923

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency VEGA of the Slovak Republic (Project 2/0174/08). H. Zöller of IFW Dresden is particularly thanked for performing FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kúdela Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kúdela, S., Oswald, S., Kúdela, S. et al. Application of FTIR spectra for evaluating interfacial reactions in metal matrix composites. Anal Bioanal Chem 390, 1477–1486 (2008). https://doi.org/10.1007/s00216-007-1820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1820-z

Keywords

Navigation