Skip to main content
Log in

Binding properties of a monoclonal antibody against the Cry1Ab from Bacillus Thuringensis for the development of a capillary electrophoresis competitive immunoassay

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Experimental work performed was aimed at the assessment of a competitive capillary electrophoresis immunoassay with laser-induced fluorescence (CEIA-LIF) detection for the determination of the Cry1Ab endotoxin from Bacillus thuringensis. The binding constant of a monoclonal antibody, raised against the insecticide protein Cry1Ab, was determined on a microplate by indirect enzyme-linked immunosorbent assay (ELISA) and compared with that obtained in-capillary under nonequilibrium separation conditions. The two binding constants appear comparable—(5.0 ± 1.2) × 106 M−1 and (9.06 ± 5.7) × 106 M−1—reflecting good preservation of the antibody binding behavior in the capillary electrophoresis format. These results allow use of a calibration curve possible between 0.2 and 150 nM of endotoxin protein, with a limit of detection of 0.5 nM (33 μg L−1). Preliminary recovery experiments on maize extracts spiked with known amounts of Cry1Ab endotoxin also showed promising results in detecting the toxin in complex real matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. European Commission Regulation (EC) 1829/2003 (2003) Off J Eur Communities L268:1–23

    Google Scholar 

  2. European Commission Regulation (EC) 1830/2003 (2003) Off J Eur Communities L268:24–28

    Google Scholar 

  3. European Commission Recommendation (EC) 787/2004 (2004) Off J Eur Communities L348:18–26

    Google Scholar 

  4. Chassy B, Hlywka JJ, Kleter GA, Kok EJ, Kuiper HA, McGloughlin M, Munro IC, Phipps RH, Reid JE (2004) Compr Rev Food Sci F 3:38–104

    Google Scholar 

  5. Gill SS, Cowles EA, Pietrantonio PV (1992) Annu Rev Entomol 37:615–636

    Article  CAS  Google Scholar 

  6. Aronson AI, ShaiY (2001) FEMS Microbiol Lett 195:1–8

    Article  CAS  Google Scholar 

  7. Clark BW, Phillips TA, Coats JR (2005) J Agric Food Chem 53:4643–4653

    Article  CAS  Google Scholar 

  8. Ahmed FE (2002) Trends Biotechnol 20:215–223

    Article  CAS  Google Scholar 

  9. Garcia-Canas V, Cifuentes A, Gonzalez R (2004) Crit Rev Food Sci 44:425–436

    Article  CAS  Google Scholar 

  10. Hernandez M, Rodriguez-Lazaro D, Ferrando A (2005) Curr Anal Chem 1:203–221

    Article  CAS  Google Scholar 

  11. Poulsen LK (2004) Mol Nutr Food Res 48:413–423

    Article  Google Scholar 

  12. Ermolli M, Fantozzi A, Marini M, Scotti D, Balla B, Hoffmann S, Querci M, Paoletti C; Van den Eede G Food (2006) Accredit Qual Assur 11:55–57

    Article  CAS  Google Scholar 

  13. Fantozzi A, Ermolli M, Marini M, Scotti D, Balla B, Querci M, Langrell SRH, Van Den Eede G (2007) J Agric Food Chem 55:1071–1076

    Article  CAS  Google Scholar 

  14. Sims SR, Holden LR (1996) Environ Entomol 25:659–664

    Google Scholar 

  15. Sims SR, Berberich SA, Nida DL, Segalini LL, Leach JN, Ebert CC, Fuchs RL (1996) Crop Sci 36:1212–1216

    Article  Google Scholar 

  16. Tapp H, Stozky G (1997) Can J Microbiol 43:1074–1078

    Article  CAS  Google Scholar 

  17. Tapp H, Stozky G (1995) Appl Environ Microbiol 61:602–609

    CAS  Google Scholar 

  18. Lin SM, Hsu SM (2005) Anal Chem 341:1–15

    CAS  Google Scholar 

  19. Schou C, Heegaard NHH (2006) Electrophoresis 27:44–59

    Article  CAS  Google Scholar 

  20. Hermanson GT, Mallia AK, Smith PK (1992) Immobilized affinity ligand techniques. Academic, San Diego, pp 331–334

  21. Feng Q, Becktel WJ (1994) Biochemistry 33:8521–8526

    Article  CAS  Google Scholar 

  22. Barberi R, Bonvent JJ, Bartolino R, Roeraade J, Capelli L, Righetti PG (2000) J Chromatogr B 683:3–13

    Google Scholar 

  23. Verzola B, Gelfi C, Righetti PG (2000) J Chromatogr A 868:85–99

    Article  CAS  Google Scholar 

  24. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York, pp 354–355

  25. Friguet B, Chaffotte AF, Djavadi-Ohaniance L, Goldberg ME (1985) J Immunol Methods 77:305–319

    Article  CAS  Google Scholar 

  26. Giovannoli C, Giraudi G, Baggiani C, Tozzi C, Anfossi L, Dolci M (2003) Anal Chim Acta 478:271–280

    Article  CAS  Google Scholar 

  27. Walschus U, Witt S, Wittmann C (2002) Food Agric Immunol 14:231–240

    Article  CAS  Google Scholar 

  28. Bielot H, Carey PR, Chroma C, Kaplan H, Lessard T, Pozsgay M (1989) Biochem J 260:87–91

    Google Scholar 

  29. Kricka LJ (1985) Ligand-binder assay. In: Schwartz MK (ed) Clinical and biochemical analysis. Dekker, New York, pp 7–10

    Google Scholar 

  30. Tanaka Y, Terabe S (2002) J Chromatogr B 768:81–92

    Article  CAS  Google Scholar 

  31. Heegaard NHH, Kennedy RT (1999) Electrophoresis 20:3122–3133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Prof. Marzari of the University of Trieste (Italy) for kindly supplying the transgenic Cry1Ab and the monoclonal antibody against the toxin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Giovannoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovannoli, C., Anfossi, L., Baggiani, C. et al. Binding properties of a monoclonal antibody against the Cry1Ab from Bacillus Thuringensis for the development of a capillary electrophoresis competitive immunoassay. Anal Bioanal Chem 392, 385–393 (2008). https://doi.org/10.1007/s00216-007-1811-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1811-0

Keywords

Navigation