Analytical and Bioanalytical Chemistry

, Volume 390, Issue 8, pp 1959–1973 | Cite as

How to confirm identified toxicants in effect-directed analysis

  • Werner Brack
  • Mechthild Schmitt-Jansen
  • Miroslav Machala
  • Rikke Brix
  • Damià Barceló
  • Emma Schymanski
  • Georg Streck
  • Tobias Schulze
Review

Abstract

Due to the production and use of a multitude of chemicals in modern society, waters, sediments, soils and biota may be contaminated with numerous known and unknown chemicals that may cause adverse effects on ecosystems and human health. Effect-directed analysis (EDA), combining biotesting, fractionation and chemical analysis, helps to identify hazardous compounds in complex environmental mixtures. Confirmation of tentatively identified toxicants will help to avoid artefacts and to establish reliable cause–effect relationships. A tiered approach to confirmation is suggested in the present paper. The first tier focuses on the analytical confirmation of tentatively identified structures. If straightforward confirmation with neat standards for GC–MS or LC–MS is not available, it is suggested that a lines-of-evidence approach is used that combines spectral library information with computer-based structure generation and prediction of retention behaviour in different chromatographic systems using quantitative structure–retention relationships (QSRR). In the second tier, the identified toxicants need to be confirmed as being the cause of the measured effects. Candidate components of toxic fractions may be selected based, for example, on structural alerts. Quantitative effect confirmation is based on joint effect models. Joint effect prediction on the basis of full concentration–response plots and careful selection of the appropriate model are suggested as a means to improve confirmation quality. Confirmation according to the Toxicity Identification Evaluation (TIE) concept of the US EPA and novel tools of hazard identification help to confirm the relevance of identified compounds to populations and communities under realistic exposure conditions. Promising tools include bioavailability-directed extraction and dosing techniques, biomarker approaches and the concept of pollution-induced community tolerance (PICT).

Figure

Toxicity confirmation in EDA as a tiered approach

Keywords

Effect-directed analysis Toxicity identification evaluation Toxicity confirmation Structural analysis Mixture toxicity Hazard 

Abbreviations

AhR

arylhydrocarbon receptor

AMDIS

Automated Mass Spectral Deconvolution and Identification System

BEQ

benzo[a]pyrene equivalent quantity

BP

boiling point

CA

concentration addition

CALUX

chemical-activated luciferase expression

ECX

effect concentration required to achieve X% effect

EDA

effect-directed analysis

EROD

ethoxyresorufin-O-deethylase

DNA

deoxyribonucleic acid

GC/MS

gas chromatography with mass-selective detection

IA

independent action

ICQ

index of confirmation quality

IEQ

induction equivalent quantities

IP

identification points

LC-Q-TOF-MS

liquid chromatography with a hybrid quadrupole–time-of-flight mass spectrometer

LSER

linear solvation free-energy relationships

NIST

National Institute of Standards and Technology

NMR

nuclear magnetic resonance

PAH

polycyclic aromatic hydrocarbon

PCB

polychlorinated biphenyl

PCDD/F

polychlorinated dibenzo-p-dioxin and furan

PDMS

polydimethylsiloxane

PICT

pollution-induced community tolerance

QSAR

quantitative structure–activity relationship

QSRR

quantitative structure–retention relationship

REP

relative potency

RI

retention index

RTL-W1

rainbow trout liver cell line W1

SPMD

semipermeable membrane device

TEQ

toxicity equivalent quantity

TIE

toxicity identification evaluation

TU

toxic units

US EPA

United States Environmental Protection Agency

References

  1. 1.
    Schuetzle D, Lewtas J (1986) Anal Chem 58:1060A–1075ACrossRefGoogle Scholar
  2. 2.
    Burgess RM (2000) Int J Environ Pollut 13:2–33Google Scholar
  3. 3.
    Brack W (2003) Anal Bioanal Chem 377:397–407CrossRefGoogle Scholar
  4. 4.
    Hewitt LM, Marvin CH (2005) Mutat Res–Rev Mutat 589:208–232Google Scholar
  5. 5.
    Brack W, Klamer HJC, López de Alda MJ, Barceló D (2007) Environ Sci Pollut Res 14:30–38CrossRefGoogle Scholar
  6. 6.
    Brack W, Schirmer K (2003) Environ Sci Technol 37:3062–3070CrossRefGoogle Scholar
  7. 7.
    Norberg-King TJ, Mount DI, Durhan EJ, Ankley GT, Burkhard LP, Amato JR, Lukasewycz MT, Schubauer-Berigan MK, Anderson-Carnahan L (1991) Methods for aquatic toxicity identification evaluations. Phase I toxicity characterization procedures (EPA/600/6-91/003). United States Environmental Protection Agency, Washington, DCGoogle Scholar
  8. 8.
    Mount DI, Anderson-Carnahan L (1989) Methods for aquatic toxicity identification evaluations. Phase II toxicity identification procedures (EPA/600/3-88/035). United States Environmental Protection Agency, Washington, DCGoogle Scholar
  9. 9.
    Mount DI (1989) Methods for aquatic toxicity identification evaluation. Phase III toxicity confirmation procedures (EPA/600/3-88/036). United States Environmental Protection Agency, Washington, DCGoogle Scholar
  10. 10.
    Bailey HC, Elphick JR, Krassoi R, Lovell A (2001) Environ Toxicol Chem 20:2877–2882CrossRefGoogle Scholar
  11. 11.
    Grote M, Brack W, Walter HA, Altenburger R (2005) Environ Toxicol Chem 24:1420–1427CrossRefGoogle Scholar
  12. 12.
    Brack W, Bakker J, de Deckere E, Deerenberg C, van Gils J, Hein M, Jurajda P, Kooijman SALM, Lamoree MH, Lek S, López de Alda MJ, Marcomini A, Muñoz I, Rattei S, Segner H, Thomas K, von der Ohe PC, Westrich B, de Zwart D, Schmitt-Jansen M (2005) Environ Sci Pollut Res 12:252–256CrossRefGoogle Scholar
  13. 13.
    Brack W, Kind T, Hollert H, Schrader S, Möder M (2003) J Chromatogr A 986:55–66Google Scholar
  14. 14.
    Meinert C, Moeder M, Brack W (2007) Chemosphere 70:215–223CrossRefGoogle Scholar
  15. 15.
    Korytar P, Leonards PEG, de Boer J, Brinkman UAT (2005) J Chromatogr A 1086:29–44Google Scholar
  16. 16.
    Nukaya H, Yamashita J, Tsuji K, Terao Y, Ohe T, Sawanishi H, Katsuhara T, Kiyokawa K, Tezuka M, Oguri A, Sugimura T, Wakabayashi K (1997) Chem Res Toxicol 10:1061–1066CrossRefGoogle Scholar
  17. 17.
    Oguri A, Shiozawa T, Terao Y, Nukaya H, Yamashita J, Ohe T, Sawanishi H, Katsuhara T, Sugimura T, Wakabayashi K (1998) Chem Res Toxicol 11:1195–1200CrossRefGoogle Scholar
  18. 18.
    Shiozawa T, Tada A, Nukaya H, Watanabe T, Takahashi Y, Asanoma M, Ohe T, Sawanishi H, Katsuhara T, Sugimura T, Wakabayashi K, Terao Y (2000) Chem Res Toxicol 13:535–540CrossRefGoogle Scholar
  19. 19.
    Belknap AM, Solomon KR, MacLatchy DL, Dube MG, Hewitt LM (2006) Environ Toxicol Chem 25:2322–2333CrossRefGoogle Scholar
  20. 20.
    Christmann RF (1982) Environ Sci Technol 16:143ACrossRefGoogle Scholar
  21. 21.
    National Institute of Standards and Technology (2007) Automated mass spectral deconvolution and identification system (AMDIS). NIST, Washington, DC (see http://chemdata.nist.gov/mass-spc/amdis/, last accessed 24 December 2007)
  22. 22.
    NIST/EPA/NIH (2005) Mass Spectral Library Version 2.0. US Department of Commerce, National Institute of Standards and Technology, Washington, DCGoogle Scholar
  23. 23.
    Benecke C, Grüner T, Kerber A, Laue R, Wieland T (1997) Fresenius’ J Anal Chem 359:23–32CrossRefGoogle Scholar
  24. 24.
    Kerber A, Laue P, Meringer M, Rucker C (2005) Match–Commun Math Comp Chem 54:301–312Google Scholar
  25. 25.
    Kerber A, Laue R, Meringer M, Rücker C (2004) J Comput Chem Jpn 3:85–96Google Scholar
  26. 26.
    Kerber A, Laue R, Meringer M, Varmuza K (2001) Advances in mass spectrometry, vol 15. Wiley, New YorkGoogle Scholar
  27. 27.
    Eckel WP, Kind T (2003) Anal Chim Acta 494:235–243Google Scholar
  28. 28.
    Abraham MH (1993) J Phys Org Chem 6:660–684CrossRefGoogle Scholar
  29. 29.
    Urbanczyk A, Staniewski J, Szymanowski J (2002) Anal Chim Acta 466:151–159Google Scholar
  30. 30.
    Vitha M, Carr PW (2006) J Chromatogr A 1126:143–194Google Scholar
  31. 31.
    Platts JA, Butina D, Abraham MH, Hersey A (1999) J Chem Inf Comp Sci 39:835–845CrossRefGoogle Scholar
  32. 32.
    Schüürmann G, Ebert RU, Kuehne R (2006) Chimia 60:691–698CrossRefGoogle Scholar
  33. 33.
    Brack W, Schirmer K, Erdinger L, Hollert H (2005) Environ Toxicol Chem 24:2445–2458CrossRefGoogle Scholar
  34. 34.
    Petrovic M, Barcelo D (2006) J Mass Spectrom 41:1259–1267CrossRefGoogle Scholar
  35. 35.
    Bobeldijk I, Vissers JPC, Kearney G, Major H, van Leerdam JA (2001) J Chromatogr A 929:63–74Google Scholar
  36. 36.
    Grung M, Lichtenthaler R, Ahel M, Tollefsen KE, Langford K, Thomas KV (2007) Chemosphere 67:108–120CrossRefGoogle Scholar
  37. 37.
    EC (2002) Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results (2002/657/EC). European Commission, BrusselsGoogle Scholar
  38. 38.
    Pérez S, Eichhorn P, Barceló D (2007) Anal Chem (in press)Google Scholar
  39. 39.
    Picó Y, la Farré M, Soler C, Barceló D (2007) Anal Chem (in press)Google Scholar
  40. 40.
    Farre M, Kuster M, Brix R, Rubio F, Alda MJL, Barcelo D (2007) J Chromatogr A 1160:166–175Google Scholar
  41. 41.
    Picó Y, la Farré M, Soler C, Barceló D (2007) J Chromatogr A (in press)Google Scholar
  42. 42.
    Braga RS, Barone PMVB, Galvao DS (1999) J Mol Struct–Theochem 464:257–266Google Scholar
  43. 43.
    Liu HX, Papa E, Gramatica P (2006) Chem Res Toxicol 19:1540–1548CrossRefGoogle Scholar
  44. 44.
    von der Ohe PC, Kuhne R, Ebert RU, Altenburger R, Liess M, Schuurmann G (2005) Chem Res Toxicol 18:536–555CrossRefGoogle Scholar
  45. 45.
    Fang H, Tong WD, Branham WS, Moland CL, Dial SL, Hong HX, Xie Q, Perkins R, Owens W, Sheehan DM (2003) Chem Res Toxicol 16:1338–1358CrossRefGoogle Scholar
  46. 46.
    Arulmozhiraja S, Morita M (2004) Chem Res Toxicol 17:348–356CrossRefGoogle Scholar
  47. 47.
    Estrada E, Molina E (2006) J Mol Graph Model 25:275–288CrossRefGoogle Scholar
  48. 48.
    Enslein K, Gombar VK, Blake BW (1994) Mut Res 305:47–61Google Scholar
  49. 49.
    Altenburger R, Nendza M, Schuurmann G (2003) Environ Toxicol Chem 22:1900–1915CrossRefGoogle Scholar
  50. 50.
    Faust M, Altenburger R, Backhaus T, Bodeker W, Scholze M, Grimme LH (2000) J Environ Qual 29:1063–1068CrossRefGoogle Scholar
  51. 51.
    Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, DeWitt TH, Redmond MS, Ferraro SP (1995) Environ Toxicol Chem 14:1977–1987CrossRefGoogle Scholar
  52. 52.
    Boxall ABA, Maltby L (1997) Arch Environ Contam Toxicol 33:9–16CrossRefGoogle Scholar
  53. 53.
    Clemons JH, Dixon DG, Bols NC (1997) Chemosphere 34:1105–1119CrossRefGoogle Scholar
  54. 54.
    Jung KJ, Klaus T, Fent K (2001) Environ Toxicol Chem 20:149–159CrossRefGoogle Scholar
  55. 55.
    Tillitt DE, Giesy JP, Ankley GT (1991) Environ Sci Technol 25:87–92CrossRefGoogle Scholar
  56. 56.
    Willett KL, Gardinali PR, Sericano JL, Wade TL, Safe SH (1997) Arch Environ Contam Toxicol 32:442–448CrossRefGoogle Scholar
  57. 57.
    Brown DJ, Chu M, Overmeire IV, Chu A, Clark GC (2001) Organohal Comp 53:211–214Google Scholar
  58. 58.
    Machala M, Vondracek J, Blaha L, Ciganek M, Neca J (2001) Mutat Res 497:49–62Google Scholar
  59. 59.
    van den Berg M, Birnbaum L, Bosveld ATC, Brunstrom B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, van Leeuwen FXR, Liem AKD, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T (1998) Environ Health Persp 106:775–792CrossRefGoogle Scholar
  60. 60.
    Vondracek J, Kozubik A, Machala M (2002) Toxicol Sci 70:193–201Google Scholar
  61. 61.
    Houtman CJ, Van Houten YK, Leonards PG, Brouwer A, Lamoree MH, Legler J (2006) Environ Sci Technol 40:2455–2461CrossRefGoogle Scholar
  62. 62.
    Blaha L, Kapplova P, Vondracek J, Upham B, Machala M (2002) Toxicol Sci 65:43–51Google Scholar
  63. 63.
    Madill REA, Brownlee BG, Josephy PD, Bunce NJ (1999) Environ Sci Technol 33:2510–2516CrossRefGoogle Scholar
  64. 64.
    Durant JL, Busby WF, Lafleur AL, Penman BW, Crespi CL (1996) Mutat Res 371:123–157Google Scholar
  65. 65.
    Altenburger R, Walter H, Grote M (2004) Environ Sci Technol 38:6353–6362CrossRefGoogle Scholar
  66. 66.
    Brack W, Segner H, Möder M, Schüürmann G (2000) Environ Toxicol Chem 19:2493–2501CrossRefGoogle Scholar
  67. 67.
    Brack W, Schirmer K, Kind T, Schrader S, Schüürmann G (2002) Environ Toxicol Chem 21:2654–2662CrossRefGoogle Scholar
  68. 68.
    Payne J, Rajapakse N, Wilkins M, Kortenkamp A (2000) Environ Health Persp 108:983–987CrossRefGoogle Scholar
  69. 69.
    Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Aquat Toxicol 63:43–63CrossRefGoogle Scholar
  70. 70.
    Walter H, Consolaro F, Gramatica P, Scholze M, Altenburger R (2002) Ecotoxicology 11:299–310CrossRefGoogle Scholar
  71. 71.
    Tammer B, Lehmann I, Nieber K, Altenburger R (2007) Toxicol Lett 170:124–133CrossRefGoogle Scholar
  72. 72.
    Kortenkamp A, Altenburger R (1999) Sci Total Environ 233:131–140CrossRefGoogle Scholar
  73. 73.
    Hilscherova K, Kannan K, Kang YS, Holoubek I, Machala M, Masunaga S, Nakanishi J, Giesy JP (2001) Environ Toxicol Chem 20:2768–2777CrossRefGoogle Scholar
  74. 74.
    Gale RW, Long ER, Schwartz TR, Tillitt DE (2000) Environ Toxicol Chem 19:1348–1359CrossRefGoogle Scholar
  75. 75.
    Putzrath RM (1997) Regul Toxicol Pharmacol 25:68–78CrossRefGoogle Scholar
  76. 76.
    Villeneuve DL, Blankenship AL, Giesy JP (2000) Environ Toxicol Chem 19:2835–2843CrossRefGoogle Scholar
  77. 77.
    Rosenkranz HS, McCoy EC, Sanders DR, Butler M, Kiriazides DK, Mermelstein R (1980) Science 209:1039–1042CrossRefGoogle Scholar
  78. 78.
    Møller M, Alfheim I, Larssen S, Mikalsen A (1982) Environ Sci Technol 16:221–225CrossRefGoogle Scholar
  79. 79.
    Fernandez P, Grifoll M, Solanas AM, Bayona JM, Albaiges J (1992) Environ Sci Technol 26:817–829CrossRefGoogle Scholar
  80. 80.
    Durant JL, Lafleur AL, Plummer EF, Taghizadeh K, Busby WF, Thilly WG (1998) Environ Sci Technol 32:1894–1906CrossRefGoogle Scholar
  81. 81.
    Erdinger L, Dorr I, Durr M, Hopker KA (2004) Mutat Res–Genet Toxicol Environ Mutagen 564:149–157Google Scholar
  82. 82.
    Marvin CH, Tessaro M, McCarry BE, Bryant DW (1994) Sci Tot Environ 156:119–131CrossRefGoogle Scholar
  83. 83.
    White PA (2002) Mut Res 515:85–98Google Scholar
  84. 84.
    Haugen DA, Peak MJ (1983) Mut Res 116:257–269CrossRefGoogle Scholar
  85. 85.
    Zeiger E, Pagano DA (1984) Environ Mutagen 6:683–694CrossRefGoogle Scholar
  86. 86.
    Brack W, Frank H (1998) Ecotox Environ Saf 40:34–41CrossRefGoogle Scholar
  87. 87.
    Ensenbach U (1998) Fres Environ Bull 7:531–538Google Scholar
  88. 88.
    Drummond RA, Russom CL (1990) Environ Toxicol Chem 9:37–46CrossRefGoogle Scholar
  89. 89.
    Pellacani C, Buschini A, Furlini M, Poli P, Rossi C (2006) Aquat Toxicol 77:1–10CrossRefGoogle Scholar
  90. 90.
    Nikoyan A, De Meo M, Sari-Minodier I, Chaspoul F, Gallice P, Botta A (2007) Mutat Res–Genet Toxicol Environ Mutagen 626:88–101Google Scholar
  91. 91.
    Brack W, Altenburger R, Ensenbach U, Möder M, Segner H, Schüürmann G (1999) Arch Environ Contam Toxicol 37:164–174CrossRefGoogle Scholar
  92. 92.
    Reichenberg F, Mayer P (2006) Environ Toxicol Chem 25:1239–1245CrossRefGoogle Scholar
  93. 93.
    Burgess RM, Perron MM, Cantwell M, Ho KT, Serbst JR, Pelletier E (2004) Arch Environ Contam Toxicol 47:440–447CrossRefGoogle Scholar
  94. 94.
    Burgess RM, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Cook HF, Kuhn A (2000) Environ Toxicol Chem 19:982–991CrossRefGoogle Scholar
  95. 95.
    Burgess RM, Perron MM, Cantwell MG, Ho KT, Pelletier MC, Serbst JR, Ryba SA (2007) Environ Toxicol Chem 26:61–67CrossRefGoogle Scholar
  96. 96.
    Ho KT, Burgess RM, Pelletier MC, Serbst JR, Cook H, Cantwell MG, Ryba SA, Perron MM, Lebo J, Huckins JN, Petty J (2004) Environ Toxicol Chem 23:2124–2131CrossRefGoogle Scholar
  97. 97.
    Cornelissen G, Rigterink H, ten Hulscher DEM, Vrind BA, van Noort PCM (2001) Environ Toxicol Chem 20:706–711CrossRefGoogle Scholar
  98. 98.
    Schwab K, Brack W (2007) J Soil Sediments 7:178–186Google Scholar
  99. 99.
    van den Heuvel-Greve MJ, Kooman H, Hermans J, Bakker J (2007) A TIE pilot study using in vivo bioassay with the estuarine amphipod, Corophium volutator, as a first approach to in vivo EDA. Poster presentation at 17th Annual Meeting of SETAC Europe, Porto, Portugal, 20–24 May 2007Google Scholar
  100. 100.
    Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J (2003) Aquat Toxicol 64:437–449CrossRefGoogle Scholar
  101. 101.
    Hyne RV, Maher WA (2003) Ecotox Environ Saf 54:366–374CrossRefGoogle Scholar
  102. 102.
    Hinton DE, Kullman SW, Hardman RC, Volz DC, Chen PJ, Carney M, Bencic DC (2005) Mar Pollut Bull 51:635–648CrossRefGoogle Scholar
  103. 103.
    Shugart LR (2000) Ecotoxicology 9:329–340CrossRefGoogle Scholar
  104. 104.
    Hutchinson TH, Ankley GT, Segner H, Tyler CR (2006) Environ Health Persp 114:106–114CrossRefGoogle Scholar
  105. 105.
    Fisher T, Crane M, Callaghan A (2003) Ecotox Environ Saf 54:1–6CrossRefGoogle Scholar
  106. 106.
    Machala M, Dušek L, Hilscherová K, Kubínová R, Jurajda P, Neca J, Ulrich R, Gelnar M, Studnicková Z, Holoubek I (2001) Environ Toxicol Chem 20:1141–1148CrossRefGoogle Scholar
  107. 107.
    Solé M, López de Alda MJ, Castillo M, Porte C, Ladegaard-Pedersen K, Barceló D (2000) Environ Sci Technol 34:5076–5083CrossRefGoogle Scholar
  108. 108.
    Mayer P, Wernsing J, Tolls J, de Maagd PGJ, Sijm DTHM (1999) Environ Sci Technol 33:2284–2290CrossRefGoogle Scholar
  109. 109.
    Heinis LJ, Highland TL, Mount DR (2004) Environ Sci Technol 38:6256–6262CrossRefGoogle Scholar
  110. 110.
    Brown RS, Akhtar P, Akerman J, Hampel L, Kozin IS, Villerius LA, Klamer HJC (2001) Environ Sci Technol 35:4097–4102CrossRefGoogle Scholar
  111. 111.
    Kiparissis Y, Akhtar P, Hodson P, Brown RS (2003) Environ Sci Technol 37:2262–2266CrossRefGoogle Scholar
  112. 112.
    Bandow N, Altenburger R, Paschke A, Brack W (2007) PDMS coated stirring bars—a new method to include the bioavailability in the effect-directed analysis of contaminated sediments. Presentation at 17th Annual Meeting of SEATC Europe, Porto, Portugal, 20–24 May 2007Google Scholar
  113. 113.
    Donkin P, Smith EL, Rowland SJ (2003) Environ Sci Technol 37:4825–4830CrossRefGoogle Scholar
  114. 114.
    Houtman CJ, Van Oostven AM, Brouwer A, Lamoree MH, Legler J (2004) Environ Sci Technol 38:6415–6423CrossRefGoogle Scholar
  115. 115.
    Schmitt-Jansen M, Altenburger R (2005) Environ Toxicol Chem 24:304–312CrossRefGoogle Scholar
  116. 116.
    Petersen S, Gustavson K (1998) Aquat Toxicol 40:253–264CrossRefGoogle Scholar
  117. 117.
    Blanck H (2002) Human Ecol Risk Assess 8:1003–1034CrossRefGoogle Scholar
  118. 118.
    Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2007) Basic Appl Ecol DOI 10.1016/j.baae.2007.08.008
  119. 119.
    Schmitt-Jansen M, Reiners S, Altenburger R (2006) UWSF-Z Umweltchem Ökotoxikol 16:85–91Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Werner Brack
    • 1
  • Mechthild Schmitt-Jansen
    • 2
  • Miroslav Machala
    • 3
  • Rikke Brix
    • 4
  • Damià Barceló
    • 4
  • Emma Schymanski
    • 1
  • Georg Streck
    • 1
  • Tobias Schulze
    • 1
  1. 1.Department Effect-Directed AnalysisUFZ Helmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.Department Bioanalytical EcotoxicologyUFZ Helmholtz Centre for Environmental ResearchLeipzigGermany
  3. 3.Veterinary Research InstituteBrnoCzech Republic
  4. 4.Department of Environmental ChemistryIIQAB-CSICBarcelonaSpain

Personalised recommendations