Skip to main content
Log in

Titania sol–gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

For detection of phenolic compounds in environmental water samples we propose an amperometric biosensor based on tyrosinase immobilized in titania sol–gel. The analytical characteristics toward catechol, p-cresol, phenol, p-chlorophenol, and p-methylcatechol were determined. The linear range for catechol determination was 2.2 × 10−7–1.3 × 10−5 mol L−1 with a limit of detection of 9 × 10−8 mol L−1 and sensitivity 2.0 × 103 mA mol−1 L. The influence of sample matrix components on the electrode response was studied according to Plackett–Burman experimental design. The potential interferents Mg2+, Ca2+, \( {\text{HCO}}^{ - }_{3} \), \( {\text{SO}}^{{2 - }}_{4} \), and Cl, which are usually encountered in waters, were taken into account in the examination. Cu2+ was also taken into account, because CuSO4 is sometimes added to a water sample, as a preservative, before determination of phenolic compounds. It was found that among the ions tested only Mg2+ and Ca2+ did not directly affect the electrode response. The developed biosensor was used for determination of catechol in spring and surface water samples using the standard addition method.

Cyclic voltammograms of the carbon electrode without and with titania gel layer. Supporting electrolite: 0.1 mol L-1 phosphate buffer solution pH7; scan rate 500 mV s-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saraji M, Bakhashi M (2005) J Chromatogr A 1098:30–36

    Article  CAS  Google Scholar 

  2. Duran N, Rosa MA, D’Annibale A, Gianfreda L (2002) Enzyme Microb Technol 31:907–931

    Article  CAS  Google Scholar 

  3. Kulys J, Vidziunaite R (2003) Biosens Bioelectron 18:319–325

    Article  CAS  Google Scholar 

  4. Wang B, Zang J, Dong S (2000) Biosens Bioelectron 15:397–402

    Article  CAS  Google Scholar 

  5. Rajesh, Takashima W, Kaneto K (2004) Sens Actuators B 102:271–277

    Article  CAS  Google Scholar 

  6. Rijiravanich P, Aoki K, Chen J, Surareungchai W, Somasundrum M (2006) J Electroanal Chem 589:249–258

    Article  CAS  Google Scholar 

  7. Perez JHP, Lopez MS-P, Lopez-Cabarcos E, Lopez-Ruiz B (2006) Biosens Bioelectron 122:429–439

    Article  CAS  Google Scholar 

  8. Caarralero V, Mena ML, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2006) Biosens Bioelectron 22:730–736

    Article  CAS  Google Scholar 

  9. Liu Z, Liu J, Shen G, Yu R (2006) Electroanalysis 16:1572–1577

    Article  CAS  Google Scholar 

  10. Yildiz HB, Castillo J, Guschin DA, Toppare L, Schumann W (2007) Microchim Acta 159:27–34

    Article  CAS  Google Scholar 

  11. Kaoutit ME, Naranjo-Rodrigez I, Temsamani KR, de Cisneros JLH-H (2007) Biosens Bioelectron 22:2958–2966

    Article  CAS  Google Scholar 

  12. Fan Q, Shan D, Xue H, He Y, Cosnier S (2007) Biosens Bioelectron 22:816–821

    Article  CAS  Google Scholar 

  13. Tembe S, Onamdar S, Haram S, Karve M, D’Souza SF (2007) J Biotechnol 128:80–85

    Article  CAS  Google Scholar 

  14. Tsai Y-Ch, Chiu Ch-Ch (2007) Sens Actuators B 125:10–16

    Article  CAS  Google Scholar 

  15. Aurobind SV, Amirthalingam KP, Gomathi H (2006) Adv Colloid Interface Sci 121:1–7

    Article  CAS  Google Scholar 

  16. Wang J (1999) Anal Chim Acta 399:21–27

    Article  CAS  Google Scholar 

  17. Gupta R, Chaudhury NK (2007) Biosens Bioelectron 22:2387–2399

    Article  CAS  Google Scholar 

  18. Singh S, Singhal R, Malhotra BD (2007) Anal Chim Acta 582:335–343

    Article  CAS  Google Scholar 

  19. Yu J, Ju H (2002) Anal Chem 74:3579–3583

    Article  CAS  Google Scholar 

  20. Yu J, Ju H (2003) Anal Chim Acta 486:209–216

    Article  CAS  Google Scholar 

  21. Choi HN, Kim MA, Lee W-Y (2005) Anal Chim Acta 537:179–187

    Article  CAS  Google Scholar 

  22. Kim MA, Lee W-Y (2003) Anal Chim Acta 479:143–150

    Article  CAS  Google Scholar 

  23. Yu J, Liu S, Ju H (2003) Biosens Bioelectron 19:509–514

    Article  CAS  Google Scholar 

  24. Liu Z, Liu B, Kong J, Deng J (2000) Anal Chem 72:4707–4712

    Article  CAS  Google Scholar 

  25. Temble S, Karve M, Inamdar S, Haram S, Melo J, D’Souza SF (2006) Anal Biochem 349:72–77

    Article  CAS  Google Scholar 

  26. Pena N, Reviejo AJ, Pingarron JM (2001) Talanta 55:179–187

    Article  CAS  Google Scholar 

  27. Wang B, Dong S (2000) J Electroanal Chem 487:45–50

    Article  CAS  Google Scholar 

  28. Plackett RJ, Burman JP (1946) Biometrika 33:305–325

    Article  Google Scholar 

  29. Hermanowicz W (1999) Physico-chemical studies of waters and sewages. Arkady Warszawa (in Polish)

  30. Solna R, Skladal P (2005) Electroanalysis 23:2137–2146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kochana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochana, J., Gala, A., Parczewski, A. et al. Titania sol–gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal Bioanal Chem 391, 1275–1281 (2008). https://doi.org/10.1007/s00216-007-1798-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1798-6

Keywords

Navigation