Analytical and Bioanalytical Chemistry

, Volume 390, Issue 4, pp 1111–1119 | Cite as

Screening of synthetic and plant-derived compounds for (anti)estrogenic and (anti)androgenic activities

  • Toine F. H. BoveeEmail author
  • Willem G. E. J. Schoonen
  • Astrid R. M. Hamers
  • Marta Jorge Bento
  • Ad A. C. M. Peijnenburg
Original Paper


Recently we constructed yeast cells that either express the human estrogen receptor α or the human androgen receptor in combination with a consensus ERE or ARE repeat in the promoter region of a green fluorescent protein (yEGFP) read-out system. These bioassays were proven to be highly specific for their cognate agonistic compounds. In this study the value of these yeast bioassays was assessed for analysis of compounds with antagonistic properties. Several pure antagonists, selective estrogen receptor modulators (SERMs) and plant-derived compounds were tested. The pure antiestrogens ICI 182,780 and RU 58668 were also classified as pure ER antagonists in the yeast estrogen bioassay and the pure antiandrogen flutamide was also a pure AR antagonist in the yeast androgen bioassay. The plant-derived compounds flavone and guggulsterone displayed both antiestrogenic and antiandrogenic activities, while 3,3′-diindolylmethane (DIM) and equol combined an estrogenic mode of action with an antiandrogenic activity. Indol-3-carbinol (I3C) only showed an antiandrogenic activity. Coumestrol, genistein, naringenin and 8-prenylnaringenin were estrogenic and acted additively, while the plant sterols failed to show any effect. Although hormonally inactive, in vitro and in vivo metabolism of the aforementioned plant sterols may still lead to the formation of active metabolites in other test systems.


Agonist Antagonist Plant hormones Synthetic antiestrogens Yeast estrogen bioassay Yeast androgen bioassay 



This project was financially supported by the Dutch Ministry of Agriculture, Nature and Food Quality (project number 772027.01). The authors thank Ron Hoogenboom for reading the manuscript and his advice.


  1. 1.
    Jordan VC (2003) Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. J Med Chem 46:883–908CrossRefGoogle Scholar
  2. 2.
    Denis LJ, Griffiths K (2000) Endocrine treatment in prostate cancer. Sem Surg Oncol 18:52–74CrossRefGoogle Scholar
  3. 3.
    Osborne CK, Zhao H, Fuqua SA (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 18:3172–3186Google Scholar
  4. 4.
    Juretic A, Saric N, Bisof V, Basic-Coretic M (2006) Fulvestrant: a new agent in endocrine treatment for breast cancer. Lijec Vjesn 128:31–36Google Scholar
  5. 5.
    Leblanc K, Sexton E, Parent S, Belanger G, Dery MC, Boucher V, Asselin E (2007) Effects of 4-hydroxytamoxifen, raloxifene and ICI 182 780 on survival of uterine cancer cell lines in the presence and absence of exogenous estrogens. Int J Oncol 30:477–487Google Scholar
  6. 6.
    Elkak AE, Mokbel K (2001) Pure antiestrogens and breast cancer. Curr Med Res Opin 17:282–289CrossRefGoogle Scholar
  7. 7.
    Dauvois S, Danielian PS, White R, Parker MG (1992) Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci 89:4037–4041CrossRefGoogle Scholar
  8. 8.
    Carlson RW (2005) The history and mechanism of action of fulvestrant. Clin Breast Cancer 6(Suppl. 1):S5–S8CrossRefGoogle Scholar
  9. 9.
    Cirpan T, Akercan F, Itil IM, Gundem G, Bilgen I, Yucebilgin MS (2006) Does raloxifene therapy affect mammographic breast cancer screening in postmenopausal patients? Eur J Gynaecol Oncol 27:177–178Google Scholar
  10. 10.
    Maillard S, Gauduchon J, Marsaud V, Gouilleux F, Connault E, Opolon P, Fattal E, Sola B, Renoir JM (2006) Improved antitumoral properties of pure antiestrogen RU 58668-loaded liposomes in multiple myeloma. JSBMB 100:67–78Google Scholar
  11. 11.
    Yaz Z, Kabadere S, Oztopcu P, Durmaz R, Uyar R (2004) Comparison of the antiproliferative properties of antiestrogenic drugs (nafoxidine and chlomiphene) on glioma cells in vitro. Am J Clin Oncol 27:384–388CrossRefGoogle Scholar
  12. 12.
    Maertens C, Droogmans G, Chakraborty P, Nilius B (2001) Inhibition of volume-regulated anion channels in cultured endothelial cells by the anti-oestrogens chlomiphene and nafoxidine. Br J Pharmacol 132:135–142CrossRefGoogle Scholar
  13. 13.
    Legler J, Dennekamp M, Vethaak AD, Brouwer A, Koeman JH, Van der Burg B, Murk AJ (2002) Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. Sci Total Environ 293:69–83CrossRefGoogle Scholar
  14. 14.
    NIH Publication No: 03-4503 (2003) ICCVAM evaluation of in vitro methods for detecting potential endocrine disruptorsGoogle Scholar
  15. 15.
    Fang H, Tong W, Perkins R, Soto AM, Prechtl NV, Sheehan DM (2000) Quantitative comparison of in vitro assays for estrogenic activities. Environ Health Perspect 108:723–729CrossRefGoogle Scholar
  16. 16.
    Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Olea-Serrano F (1995) The E-screen assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103:113–122CrossRefGoogle Scholar
  17. 17.
    De Gooyer ME, deckers GH, Schoonen WGEJ, Verheul HAM, Kloosterboer HJ (2003) Receptor profiling and endocrine interactions of tibolone. Steroids 68:21–30CrossRefGoogle Scholar
  18. 18.
    Kloosterboer HJ, Schoonen WGEJ, Deckers GH, Klijn JGM (1994) Effects of progestagens and Org OD14 in in vitro and in vivo tumor models. J Steroid Biochem Mol Biol 49:311–318CrossRefGoogle Scholar
  19. 19.
    Schoonen WG, Deckers G, De Gooyer ME, De Ries R, Kloosterboer HJ (2000) Hormonal properties of norethisterone, 7α-methyl-norethisterone and their derivates. J Steroid Biochem Mol Biol 74:213–222CrossRefGoogle Scholar
  20. 20.
    Sonneveld E, Riteco JAC, Jansen HJ, Pieterse B, Brouwer A, Schoonen WG, Van der Burg B (2006) Comparison of in vitro and in vivo screening models for androgenic and estrogenic activities. Toxicol Sci 89:173–187CrossRefGoogle Scholar
  21. 21.
    Bovee TFH, Helsdingen JR, Rietjens IMCM, Keijer J, Hoogenboom LAP (2004) Rapid yeast estrogen bioassays stably expressing human estrogen receptors á and â, and green fluorescent protein: a comparison of different compounds with both receptor types. JSBMB 91:99–109Google Scholar
  22. 22.
    Bovee TFH, Helsdingen JR, Hamers ARM, Van Duursen MBM, Nielen MWF, Hoogenboom LAP (2007) A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists. Anal Bioanal Chem 389:1549–1558CrossRefGoogle Scholar
  23. 23.
    Wattenberg LW (1980) Inhibitors of chemical carcinogenesis. J Environ Pathol Toxicol 3:35–52Google Scholar
  24. 24.
    Le HT, Schaldach CM, Firestone GL, Bjeldanes LF (2003) Plant-derived 3,3′-diindolylmethane is a strong androgen antagonist in human prostate cells. J Biol Chem 278:21136–21145CrossRefGoogle Scholar
  25. 25.
    Nachshon-Kedmi M, Fares FA, Yannai S (2004) Therapeutic activity of 3,3′-diindolylmethane on prostate cancer in an in vivo model. Prostate 61:153–160CrossRefGoogle Scholar
  26. 26.
    Lund TD, Munson DJ, Haldy ME, Setchell KDR, Lephart ED, Handa RJ (2004) Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol Reprod 70:1188–1195CrossRefGoogle Scholar
  27. 27.
    Wang X, Hur H, Lee JH, Kim KT, Kim S (2005) Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 71:214–219CrossRefGoogle Scholar
  28. 28.
    US Patent 20060122262, Use of equol for treating androgen mediated diseases, Accessed 25 Sept 2007
  29. 29.
    Brahmachari G, Gorai D (2006) Progress in the research on naturally occurring flavones and flavonols: an overview. Curr Org Chem 10:873–898CrossRefGoogle Scholar
  30. 30.
    Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W, Hass BS, Xie Q, Dial SL, Moland CL, Sheehan DM (2001) Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol 14:280–294CrossRefGoogle Scholar
  31. 31.
    Mosselman S, Polman J, Dijkema R (1996) ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett 392:49–53CrossRefGoogle Scholar
  32. 32.
    Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138:863–870CrossRefGoogle Scholar
  33. 33.
    Burris TP, Montrose C, Houck KA, Osborne HE, Bocchinfuso WP, Yaden BC, Cheng CC, Zink RW, Barr RJ, Hepler CD, Krishnan V, Bullock HA, Burris LL, Galvin RJ, Bramlett K, Stayrook KR (2005) The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Mol Pharmacol 67:948–954CrossRefGoogle Scholar
  34. 34.
    Leusch FDL, MacLatchy DL (2003) In vivo implants of β-sitosterol cause reductions of reactive cholesterol pools in mitochondria isolated from gonads of male goldfish (Carassius auratus). Gen Comp Endocrinol 134:255–263CrossRefGoogle Scholar
  35. 35.
    Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ljaz T, Ruparelia KC, Lamb JH, Farmer PB, Stanley LA, Burke MD (2002) The cancer preventive agent resveratrol is converted to anticancer agent picetannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer 86:774–778CrossRefGoogle Scholar
  36. 36.
    Bovee TFH, Lommerse JPM, Peijnenburg AACM, Antunes Fernandes E, Nielen MWF (2007) A new highly androgen specific yeast biosensor, enabling optimisation of (Q)SAR model approaches. JSBMB (in press)Google Scholar
  37. 37.
    Zysk JR, Johnson B, Ozenberger BA, Bingham B, Gorski J (1995) Selective uptake of estrogenic compounds by Saccharomyces cerevisiae: a mechanism for antiestrogen resistance in yeast expressing the mammalian receptor. Endocrinology 136:1323–1326CrossRefGoogle Scholar
  38. 38.
    Gibson MK, Nemmers LA, Beckman WC Jr, Davis VL, Curtis SW, Korach KS (1991) The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue. Endocrinology 129:2000–2010CrossRefGoogle Scholar
  39. 39.
    Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873Google Scholar
  40. 40.
    Wakeling AE, Bowler J (1992) ICI 182,780, a new antiestrogen with clinical potential. J Steroid Biochem Mol Biol 43:173–177CrossRefGoogle Scholar
  41. 41.
    Dudley MW, Sheeler CQ, Wong H, Khan S (2000) Activation of the human estrogen receptor by the antiestrogens ICI 182,780 and tamoxifen in yeast genetic systems: Implications for their mechanism of action. PNAS 97:3696–3701CrossRefGoogle Scholar
  42. 42.
    Watanabe T, Inoue S, Ogawa S, Ishii Y, Hiroi H, Ikeda K, Orimo A, Muramatsu M (1997) Agonistic effect of tamoxifen is dependent on cell type, ERE-promoter context, and estrogen receptor subtype: functional difference between estrogen receptors α and β. Biochem Biophys Res Commun 236:140–145CrossRefGoogle Scholar
  43. 43.
    Yoon K, Pallaroni L, Stoner M, Gaido K, Safe S (2001) Differential activation of wild-type and variant forms of estrogen receptor α by synthetic and natural estrogenic compounds using a promoter containing three estrogen-responsive elements. JSBMB 78:25–32Google Scholar
  44. 44.
    McInerney EM, Weis KE, Sun J, Mosselman S, Katzenellenbogen BS (1998) Transcription activation by the human estrogen receptor subtype β (ERβ) studied with ERβ and ERα receptor chimeras. Endocrinology 139:4513–4522CrossRefGoogle Scholar
  45. 45.
    Gustafsson JA (1999) Estrogen receptor β - a new dimension in estrogen mechanism of action. J Endocrinol 163:379–383CrossRefGoogle Scholar
  46. 46.
    Hoogenboom LAP, de Haan L, Hooijerink D, Bor G, Murk AJ, Brouwer A (2001) Estrogenic activity of estradiol and its metabolites in the ER-CALUX assay with human T47D breast cells. APMIS 109:101–107CrossRefGoogle Scholar
  47. 47.
    Fertuck KC, Matthews JB, Zacharewski TR (2001) Hydroxylated benzo[a]pyrene metabolites are responsible for in vitro estrogen receptor-mediated gene expression induced by benzo[a]pyrene, but do not elicit uterotrophic effects in vivo. Toxicol Sci 59:231–240CrossRefGoogle Scholar
  48. 48.
    Ramamoorthy K, Wang F, Chen I, Norris JD, McDonnell DP, Leonard LS, Gaido KW, Bocchinfuso WP, Korach KS, Safe S (1997) Estrogenic activity of a dieldrin/toxaphene mixture in the mouse uterus, MCF-7 human breast cancer cells, and yeast-based estrogen receptor assays: no apparent synergism. Endocrinology 138:1520–1527CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Toine F. H. Bovee
    • 1
    Email author
  • Willem G. E. J. Schoonen
    • 2
  • Astrid R. M. Hamers
    • 1
  • Marta Jorge Bento
    • 1
  • Ad A. C. M. Peijnenburg
    • 1
  1. 1.Department of Safety & HealthRIKILT-Institute of Food SafetyWageningenThe Netherlands
  2. 2.Department of PharmacologyNV OrganonOssThe Netherlands

Personalised recommendations