Analytical and Bioanalytical Chemistry

, Volume 390, Issue 2, pp 495–501 | Cite as

Simultaneous determination of picogram per gram concentrations of Ba, Pb and Pb isotopes in Greenland ice by thermal ionisation mass spectrometry

  • Salah I. Jimi
  • Kevin J. R. RosmanEmail author
  • Sungmin Hong
  • Jean-Pierre Candelone
  • Laurie J. Burn
  • Claude F. Boutron
Original Paper


A technique has been developed to simultaneously measure picogram per gram concentrations of Ba and Pb by isotope dilution mass spectrometry, as well as Pb isotopic ratios in polar ice by thermal ionisation mass spectrometry. \( {\text{BaPO}}^{ + }_{{\text{2}}} \) and Pb+ ions were employed for these determinations. A calibrated mixture of enriched 205Pb and 137Ba was added to the samples providing an accuracy of better than approximately 2% for Pb/Ba element ratio determinations. Interference by molecular ions in the Pb mass spectrum occurred only at 204Pb and 205Pb, but these contributions were negligible in terms of precisions expected on picogram-sized Pb samples. The technique is illustrated with measurements on Greenland firn, using a drill-core section that includes the Laki volcanic eruption of 1783–1784. The data show deviations from the element concentrations indicating volatile metal enrichments, but the Pb isotopic signature of the Laki lava could not be identified.


TIMS Barium Lead isotopes Ice cores Laki Volcanoes 



We thank staff and students of Curtin University’s Isotope Science Research Laboratories who provided valuable discussion. We thank Dr Haukur Johannesson who provided the solidified lava from the Laki site. This laboratory is supported by research grants from the Australian Research Council and the Antarctic Science Advisory Committee. The collection and decontamination of the samples in Greenland was supported by the Commission of the European Communities and Switzerland, and the French Ministry of the Environment. We also thank three reviewers for helpful advice on improving the manuscript.


  1. 1.
    Murozumi M, Chow TJ, Patterson CC (1969) Geochim Cosmochim Acta 33:1247–1294CrossRefGoogle Scholar
  2. 2.
    Boutron CF, Gorlack U, Candelone J-P, Bolshov MA, Delmas RJ (1991) Nature 353:153–156Google Scholar
  3. 3.
    Candelone J-P, Hong S, Pellone C, Boutron CF (1995) J Geophys Res 100:16605–16616CrossRefGoogle Scholar
  4. 4.
    Hong S, Candelone J-P, Boutron CF (1996) Earth Planet Sci Lett 144:605–610CrossRefGoogle Scholar
  5. 5.
    Chisholm W, Rosman KJR, Boutron CF, Candelone J-P, Hong S (1995) Anal Chim Acta 311:141–151CrossRefGoogle Scholar
  6. 6.
    Sturges WT, Barrie LA (1987) Nature 329:144–146CrossRefGoogle Scholar
  7. 7.
    Rosman KJR, Chisholm W, Boutron CF, Candelone J-P, Gorlach U (1993) Nature 362:333–334CrossRefGoogle Scholar
  8. 8.
    Rosman KJR, Chisholm W, Hong S, Candelone JP, Boutron CF (1997) Environ Sci Technol 31:3413–3416CrossRefGoogle Scholar
  9. 9.
    Alleman LY, Veron AJ, Church TM, Flegal AR, Hamelin B (1999) Geophys Res Lett 26:1477–1480CrossRefGoogle Scholar
  10. 10.
    Bollhoefer A, Rosman KJR (2001) Geochim Cosmochim Acta 65:1727–1740CrossRefGoogle Scholar
  11. 11.
    Heumann KG (1992) Rev Mass Spectrom 11:41–67CrossRefGoogle Scholar
  12. 12.
    Burton GR, Morgan VI, Boutron CF, Rosman KJR (2002) Anal Chim Acta 469:225–233CrossRefGoogle Scholar
  13. 13.
    Candelone J-P, Hong S, Boutron CF (1994) Anal Chim Acta 299:9–16CrossRefGoogle Scholar
  14. 14.
    Heumann KG (1988) Isotope dilution mass spectrometry. In Adams F, Gijbels R, Van Grieken R (eds) Inorganic mass spectrometry. Wiley, New YorkGoogle Scholar
  15. 15.
    Li C-F, Chena F, Li X-H (2007) Int J Mass Spectrom (in press)Google Scholar
  16. 16.
    Rosman KJR, Loss RD, de Laeter JR (1984) Int J Mass Spectrom Ion Phys 56:218–291Google Scholar
  17. 17.
    Cameron AE, Smith DH, Walker RL (1969) Anal Chem 41:525–526CrossRefGoogle Scholar
  18. 18.
    Patterson CC, Settle DM (1987) Geochimi Cosmochim Acta 51:675–681CrossRefGoogle Scholar
  19. 19.
    Vallelonga P, Van de Velde K, Candelone JP, Ly C, Rosman KJR, Boutron CF, Morgan VI, Mackey DJ (2002) Anal Chim Acta 453:1–12CrossRefGoogle Scholar
  20. 20.
    McLennan SM (2001) Geochem Geophys Geosystems, paper number 2000GC000109Google Scholar
  21. 21.
    Webster RK (1960) ’Mass spectrometric isotopic dilution analysis. In Smales AA, Wager LR (eds) Methods in geochemistry. Interscience, New York, pp 202–246Google Scholar
  22. 22.
    Eugster O, Tera F, Wasserburg GJ (1969) J Geophys Res 74:3897–3908CrossRefGoogle Scholar
  23. 23.
    Bohlke JK, de Laeter JR, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (1998) J Phys Chem Ref Data 34:57–67CrossRefGoogle Scholar
  24. 24.
    Zindler A, Jagoutz E, Goldstein S (1982) Nature 298:519–523CrossRefGoogle Scholar
  25. 25.
    Bollhoefer A, Rosman KJR (2002) Geochim Cosmochim Acta 66:1375–1386CrossRefGoogle Scholar
  26. 26.
    Sun SS, Tatsumoto M, Schilling JG (1975) Science 190:143–147Google Scholar
  27. 27.
    Sun SS, Jahn BM (1975) Nature 255:527–530CrossRefGoogle Scholar
  28. 28.
    Vallelonga P, Candelone J-P, Van de Velde K, Curran MAJ, Morgan VI, Rosman KJR (2003) Earth Planet Sci Lett 211:329–341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Salah I. Jimi
    • 1
  • Kevin J. R. Rosman
    • 1
    Email author
  • Sungmin Hong
    • 2
  • Jean-Pierre Candelone
    • 1
  • Laurie J. Burn
    • 1
  • Claude F. Boutron
    • 3
    • 4
  1. 1.Department of Imaging and Applied PhysicsCurtin University of TechnologyPerthAustralia
  2. 2.Polar Research Centre, Korean Ocean Research and Development InstituteSeoulSouth Korea
  3. 3.Laboratoire de Glaciologie et Geophysique du l’Environnement, 54 rue MoliereDomaine UniversitaireSaint Martin d’HeresFrance
  4. 4.UFR de Mecanique, Universite Joseph Fourier de Grenoble (Institut Universitaire de France), Domaine UniversitaireGrenobleFrance

Personalised recommendations