Skip to main content
Log in

Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC–ICP–MS and LC–ES-MS/ICP–MS with XANES/EXAFS in analysis of Thunbergia alata

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP–MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L−1 as arsenate. The approach of formic acid extraction followed by HPLC–ES-MS/ICP–MS identified different AsIII–PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP–qMS, or when HR-ICP–MS was used in medium resolution, the As:S ratio gave misleading results in the identification of AsIII–PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As–peptides in plants. Hence only the parallel use of ES-MS/ICP–MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as AsIII(PC2)2, AsIII(PC3) and AsIII(PC4). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As–S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As–S and As–O bonds occur in the plants. This study confirms, for the first time, that As–peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Here, the term “organo-arsenic species” is not only restricted to compounds with As–C bonds but also to complexes with organic ligands and arsenic as central atom, for example AsIII–PCs.

References

  1. Francesconi KA, Kuehnelt D (2004) Analyst 129:373–395

    Article  CAS  Google Scholar 

  2. Hansen HR, Jaspars M, Feldmann J (2004) Analyst 129:1058–1064

    Article  CAS  Google Scholar 

  3. Kahn M, Raml R, Schmeisser E, Vallant B, Francesconi KA, Goessler W (2005) Environ Chem 2:171–176

    Article  CAS  Google Scholar 

  4. Nischwitz V, Kanaki K, Pergantis SA (2006) J Anal At Spectrom 21:33–40

    Article  CAS  Google Scholar 

  5. Hansen HR, Pickford R, Thomas-Oates J, Jaspars M, Feldmann J (2004) Angew Ch Int Ed 43:337–340

    Article  CAS  Google Scholar 

  6. Raab A, Schat H, Meharg AA, Feldmann J (2005) New Phytol 168:551–558

    Article  CAS  Google Scholar 

  7. Raab A, Meharg AA, Jaspars M, Genney DR, Feldmann J (2004) J Anal At Spectrom 19:183–190

    Article  CAS  Google Scholar 

  8. Rauser WE (1995) Plant Physiol 109:1141–1149

    Article  CAS  Google Scholar 

  9. Zenk MH (1996) Gene 179:21–30

    Article  CAS  Google Scholar 

  10. Cobett SC (2000) Plant Physiol 123:825–832

    Article  Google Scholar 

  11. Meharg AA, Hartley-Whitaker J (2002) New Phytol 154:29–43

    Article  CAS  Google Scholar 

  12. Quaghebeur M, Rengel Z (2005) Microchim Acta 151:141–152

    Article  CAS  Google Scholar 

  13. Raab A, Ferreira K, Meharg AA, Feldmann J (2007) J Exp Bot 58:1333–1338

    Article  CAS  Google Scholar 

  14. Rosenberg E (2003) J Chromatogr A 1000:841–889

    Article  CAS  Google Scholar 

  15. Meharg AA, MacNair MR (1992) J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  16. Sheldrick WS, Häusler HJ (1987) Z Anorg Allg Chem 549:177

    Article  CAS  Google Scholar 

  17. Schneidersmann C, Hoppe R (1991) Z Anorg Allg Chem 605:67

    Article  CAS  Google Scholar 

  18. Trotter J, Zobel T (1995) J Chem Soc 4466

  19. Peters K, Peters EM, von Schnering HG, Wojnowski W, Tamulewicz S, Adacki KR (1997) Z Kristallogr New Cryst Struct 212:343

    CAS  Google Scholar 

  20. Bandura DR, Baranov VI, Tanner SD (2001) Fresenius J Anal Chem 370:454–470

    Article  CAS  Google Scholar 

  21. Tanner SD, Baranov VI, Bandura DR (2002) Spectrochim Acta B 57:1361–1452

    Article  Google Scholar 

  22. Douglas DJ (1997) J Am Soc Mass Spectrom 9:101–113

    Article  Google Scholar 

  23. Marcus RK (2004) J Anal At Spectrom 19:591–599

    Article  CAS  Google Scholar 

  24. Rowan JT, Houk RS (1989) Appl Spectrosc 43:976–980

    Article  CAS  Google Scholar 

  25. Wallschläger D, Stadey CJ (2007) Anal Chem 79:3873–3880

    Article  Google Scholar 

  26. Raab A, Feldmann J, Meharg AA (2004) Plant Physiol 134:1113–1122

    Article  CAS  Google Scholar 

  27. Raab A, Wright S, Jaspars M, Meharg AA, Feldmann J (2007) Angew Ch Int Ed 46:2594–2597

    Article  CAS  Google Scholar 

  28. Hu Z, Hu S, Gao S, Liu Y, Lin S (2004) Spectrochim Acta B 59:1463–1470

    Article  Google Scholar 

  29. Larsen EH, Stürup S (1994) J Anal At Spectrom 9:1099–1105

    Article  CAS  Google Scholar 

  30. Bluemlein K, Raab A, Feldmann J (2008) in preparation

  31. Mukhopadhyay R, Rosen BP, Silver S (2002) FEMS Microbiol Rev 26:311–325

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by NERC (NE/B505789/1). Many thanks to F. Bahrami (STFC Daresbury Laboratory, UK) and Julian Wills (ThermoFisher, Bremen, Germany) for their assistance in using their instrumentation. KB thanks the College of Physical Sciences for her scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Feldmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluemlein, K., Raab, A., Meharg, A.A. et al. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC–ICP–MS and LC–ES-MS/ICP–MS with XANES/EXAFS in analysis of Thunbergia alata . Anal Bioanal Chem 390, 1739–1751 (2008). https://doi.org/10.1007/s00216-007-1724-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1724-y

Keywords

Navigation