Skip to main content
Log in

Detection of molecular processes in the intact retina by ATR-FTIR spectromicroscopy

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We used Fourier transform infrared spectromicroscopy in the attenuated total reflection configuration to study biochemical events associated with the response to light of an intact retina. We show that the technique is suitable for the detection in real time of molecular processes occurring in rod outer segments induced by light absorption. Two-dimensional correlation analysis was applied to the identification and interpretation of specific spectral changes associated to the evolution of the system. The technique allows us to observe an extensive protein translocation, which we interpret as arising from the release of transducin from the disk membrane and its redistribution from the outer segment towards the inner segment of rod cells. These results are in full agreement with our current understanding of retinal physiology and validate the technique as a useful tool for the study of complex molecular processes in intact tissue.

Spectral changes in the mid infrared region following exposure of an intact retina to light

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Kazarian SG, Chan KLA (2006) Biochim Biophys Acta 1758:858–867

    Article  CAS  Google Scholar 

  2. Schnapf JL, Baylor DL (1987) Sci Am 256:40–47

    Article  CAS  Google Scholar 

  3. Baylor D (1996) Proc Nat Acad Sci 93:560–565

    Article  CAS  Google Scholar 

  4. Forti S, Menini A, Rispoli G, Torre V (1989) J Physiol 419:265–295

    CAS  Google Scholar 

  5. Menon ST, Han M, Sakmar TP (2001) Physiol Rev 81:1659–1688

    CAS  Google Scholar 

  6. Kramer RH, Molokanova E (2001) J Exp Biol 204:2921–2931

    CAS  Google Scholar 

  7. Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JL (2005) Vis Neurosci 22:417–436

    Article  CAS  Google Scholar 

  8. Flaherty KM, Zozulya S, Stryer L, McKay DB (1993) Cell 75:709–716

    Article  CAS  Google Scholar 

  9. Stryer L (1996) Proc Nat Acad Sci 93:557–559

    Article  CAS  Google Scholar 

  10. Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) Cell 83:1047–1058

    Article  CAS  Google Scholar 

  11. Palczewski K (ed) (2003) Vertebrate phototransduction and the visual cycle. Academic Press, New York

  12. Maeda T, Imanishi Y, Palczewski K (2003) Prog Retin Eye Res 22:417–434

    Article  CAS  Google Scholar 

  13. Lamb TD, Pugh EN Jr (2004) Prog Retin Eye Res 23:307–380

    Article  CAS  Google Scholar 

  14. Noda I (1989) J Am Chem Soc 111:8116–8118

    Article  CAS  Google Scholar 

  15. Noda I (1990) Appl Spectrosc 44:550–561

    Article  CAS  Google Scholar 

  16. Noda I (1993) Appl Spectrosc 47:1329–1336

    Article  CAS  Google Scholar 

  17. Noda I (2007) Anal Sci 23:139–146

    Article  Google Scholar 

  18. Marcott C, Dowrey AE, Noda I (1994) Anal Chem 66:1065A

    Article  CAS  Google Scholar 

  19. Fahmy K, Sakmar TP, Siebert F (2000) Methods Enzymol 315:178–196

    Article  CAS  Google Scholar 

  20. Fahmy K, Jager F, Beck M, Zvyaga TA, Sakmar TP, Siebert F (1993) Proc Natl Acad Sci USA 90:10206–10210

    Article  CAS  Google Scholar 

  21. Jager F, Fahmy K, Sakmar TP, Siebert F (1994) Biochemistry 33:10878–10882

    Article  CAS  Google Scholar 

  22. Rath P, Decaluwe Ll, Bovee-Geurts PH, Degrip WJ, Rothschild KJ (1993) Biochemistry 32:10277–10282

    Article  CAS  Google Scholar 

  23. Rothschild KJ (1992) J Bioenerg Biomembr 24:147–167

    Article  CAS  Google Scholar 

  24. Siebert F (1995) Israel J Chem 35:309–323

    CAS  Google Scholar 

  25. Lolley RN (1982) In Packer L (ed) Methods Enzymol, Biomembranes, Part H:37–39

  26. Baumann C (1982) In Packer L (ed) Methods Enzymol, Biomembranes, Part H:29–34

  27. Newman EA, Bartosch R (1999) J Neurosci Meth 93:169–175

    Article  CAS  Google Scholar 

  28. Fahmy K (1998) Biophys J 75:1306–1318

    Article  CAS  Google Scholar 

  29. Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Govardovskii VI, Pugh EN Jr, Arshavsky VY (2002) Neuron 33:95–106

    Article  Google Scholar 

  30. Peterson JJ, Tam BM, Moritz OL, Shelamer CL, Dugger DR, McDowell JH, Hargrave PA, Papermaster DS, Smith WC (2003) Exp Eye Res 76:553–563

    Article  CAS  Google Scholar 

  31. Brann MR, Cohen LV (1987) Science 235:585–587

    Article  CAS  Google Scholar 

  32. Zhu X, Li A, Brown B, Weiss ER, Osawa S, Craft CM (2002) Mol Vis 8:462–471

    CAS  Google Scholar 

  33. Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Neuron 46:555–567

    Article  CAS  Google Scholar 

  34. Elias RV, Sezate SS, Cao W, McGinnis JF (2004) Mol Vis 10:672–681

    CAS  Google Scholar 

  35. Fain GL (2006) Bioessays 28:344–354

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Quaroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massaro, S., Zlateva, T., Torre, V. et al. Detection of molecular processes in the intact retina by ATR-FTIR spectromicroscopy. Anal Bioanal Chem 390, 317–322 (2008). https://doi.org/10.1007/s00216-007-1710-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1710-4

Keywords

Navigation