Analytical and Bioanalytical Chemistry

, Volume 390, Issue 1, pp 281–285 | Cite as

Solving fundamental problems in chromatographic analysis

  • Thomas Skov
  • Rasmus Bro


Chromatographic analytical systems are being increasingly used for analysis of complex samples, for example, in metabonomics and food analysis. Hyphenated separation techniques (multidimensional) such as LC–MS, GC–MS, and HPLC–UV are intensively used for obtaining detailed qualitative and quantitative information. The samples are typically of a much more complex nature than in traditional analytical chemical applications and this poses problems for the traditional approaches for handling such data.

Multidimensional techniques have been used for many decades and many approaches have been put forward to deal with data when having perfect resolution of the eluting peaks. However, with more complex samples and/or the need for faster chromatographic runs, perfect separation cannot always be achieved (Fig.  1). Traditional data analysis relying on resolved peaks would, even with additional mass spectral information, fail to find the underlying analytes if the overlap is too...


Elution Profile Chromatographic Data PARAFAC2 Model Elute Analytes Correlation Optimize Warping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rew R, Davis G (1990) IEEE Comput Graphics Appl 10:76–82. Unidata [July 2007, URL:]
  2. 2.
    Bunk B, Kucklick M, Jonas R, Munch R, Schobert M, Jahn D, Hiller K (2006) Bioinformatics 22:2962–2965CrossRefGoogle Scholar
  3. 3.
    US Geological Survey (USGS), Woods Hole, NetCDF toolbox for MATLAB 6, [July 2007, URL:]
  4. 4.
    iCDF, Quality & Technology, Department of Food Science, University of Copenhagen, Denmark [September 2007, URL:]
  5. 5.
    Eilers PHC (2004) Anal Chem 76:404–411CrossRefGoogle Scholar
  6. 6.
    Kaczmarek K, Walczak B, de Jong S, Vandeginste BGM (2005) Acta Chromatogr 15:82–96Google Scholar
  7. 7.
    Nielsen NPV, Carstensen JM, Smedsgaard J (1998) J Chromatogr A 805:17–35CrossRefGoogle Scholar
  8. 8.
    Tomasi G, van den Berg F, Andersson C (2004) J Chemom 18:231–241CrossRefGoogle Scholar
  9. 9.
    Skov T, van den Berg F, Tomasi G, Bro R (2006) J Chemom 20:484–497CrossRefGoogle Scholar
  10. 10.
    LineUp, Infometrix, [July 2007, URL:]
  11. 11.
    Vivo-Truyols G, Torres-Lapasio JR, van Nederkassel AM, Heyden YV, Massart DL (2005) J Chromatogr A 1096:133–145CrossRefGoogle Scholar
  12. 12.
    Dixon SJ, Brereton RG, Soini HA, Novotny MV, Penn DJ (2006) J Chemom 20:325–340CrossRefGoogle Scholar
  13. 13.
    Stein SE (1999) J Am Soc Mass Spectrom 10:770–781CrossRefGoogle Scholar
  14. 14.
    Boque R, Ferre J (2004) LC–GC Eur 17:402–407Google Scholar
  15. 15.
    Bro R (1997) Chemom Intell Lab Syst 38:149–171CrossRefGoogle Scholar
  16. 16.
    Bylund D, Danielsson R, Malmquist G, Markides KE (2002) J Chromatogr A 961:237–244CrossRefGoogle Scholar
  17. 17.
    Hoggard JC, Synovec RE (2007) Anal Chem 79:1611–1619CrossRefGoogle Scholar
  18. 18.
    Bro R (2006) Crit Rev Anal Chem 36:279–293CrossRefGoogle Scholar
  19. 19.
    Johnson KJ, Rose-Pehrsson SL, Morris RE (2004) Energy Fuels 18:844–850CrossRefGoogle Scholar
  20. 20.
    Bicking MKL (2006) LC–GC North Am 24:402–414Google Scholar
  21. 21.
    Bicking MKL (2006) LC–GC North Am 24:604–616Google Scholar
  22. 22.
    Kiers HAL, Ten Berge JMF, Bro R (1999) J Chemom 13:275–294CrossRefGoogle Scholar
  23. 23.
    Bro R, Andersson CA, Kiers HAL (1999) J Chemom 13:295–309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Quality and TechnologyUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations