Analytical and Bioanalytical Chemistry

, Volume 389, Issue 7–8, pp 2143–2151 | Cite as

Raman spectroscopic study of bacterial endospores

  • Joke De Gelder
  • Patsy Scheldeman
  • Karen Leus
  • Marc Heyndrickx
  • Peter Vandenabeele
  • Luc Moens
  • Paul De Vos
Original Paper

Abstract

Endospores and endospore-forming bacteria were studied by Raman spectroscopy. Raman spectra were recorded from Bacillus licheniformis LMG 7634 at different steps during growth and spore formation, and from spore suspensions obtained from diverse Bacillus and Paenibacillus strains cultured in different conditions (growth media, temperature, peroxide treatment). Raman bands of calcium dipicolinate and amino acids such as phenylalanine and tyrosine are more intense in the spectra of sporulating bacteria compared with those of bacteria from earlier phases of growth. Raman spectroscopy can thus be used to detect sporulation of cells by a characteristic band at 1,018 cm–1 from calcium dipicolinate. The increase in amino acids could possibly be explained by the formation of small acid-soluble proteins that saturate the endospore DNA. Large variations in Raman spectra of endospore suspensions of different strains or different culturing conditions were observed. Next to calcium dipicolinate, tyrosine and phenylalanine, band differences at 527 and 638 cm–1 were observed in the spectra of some of the B. sporothermodurans spore suspensions. These bands were assigned to the incorporation of cysteine residues in spore coat proteins. In conclusion, Raman spectroscopy is a fast technique to provide useful information about several spore components.

Figure

A difference spectrum between Raman spectra of B. licheniformis LMG 7634 cultured for 6 days and 1 day, together with the reference Raman spectrum of calcium dipicolinate

Keywords

Raman spectroscopy Bacteria Endospore Dipicolinic acid Bacillus 

References

  1. 1.
    Setlow P (2006) J Appl Microbiol 101:514–525CrossRefGoogle Scholar
  2. 2.
    Setlow B, Atluri S, Kitchel R, Koziol-Dube K, Setlow P (2006) J Bacteriol 188:3740–3747CrossRefGoogle Scholar
  3. 3.
    Lopez-Diez EC, Goodacre R (2004) Anal Chem 76:585–591CrossRefGoogle Scholar
  4. 4.
    Kirschner C, Maquelin K, Pina P, Thi NAN, Choo-Smith LP, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D (2001) J Clin Microbiol 39:1763–1770CrossRefGoogle Scholar
  5. 5.
    Hutsebaut D, Vandroemme J, Heyrman J, Dawyndt P, Vandenabeele P, Moens L, De Vos P (2006) Syst Appl Microbiol 29:650–660CrossRefGoogle Scholar
  6. 6.
    Oust A, Moretro T, Naterstad K, Sockalingum GD, Adt I, Manfait M, Kohler A (2006) Appl Environ Microb 72:228–232CrossRefGoogle Scholar
  7. 7.
    De Gelder J, De Gussem K, Vandenabeele P, De Vos P, Moens L (2007) Anal Chim Acta 585:234–240CrossRefGoogle Scholar
  8. 8.
    Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) J Microbiol Methods 51:255–271CrossRefGoogle Scholar
  9. 9.
    Naumann D, Keller S, Helm D, Schultz C, Schrader B (1995) J Mol Struct 347:399–504CrossRefGoogle Scholar
  10. 10.
    Bell SE, Mackle JN, Sirimuthu NMS (2005) Analyst 130:545–549CrossRefGoogle Scholar
  11. 11.
    Farquharson S, Grigely L, Khitrov V, Smith W, Sperry JF, Fenerty G (2004) J Raman Spectrosc 35:82–86CrossRefGoogle Scholar
  12. 12.
    Daniels JK, Caldwell TP, Christensen KA, Chumanov G (2006) Anal Chem 78:1724–1729CrossRefGoogle Scholar
  13. 13.
    Petrov GI, Yakovlev VV, Sokolov AV, Scully MO (2005) Opt Express 13:9537–9542CrossRefGoogle Scholar
  14. 14.
    Ghiamati E, Manoharan R, Nelson WH, Sperry JF (1992) Appl Spectrosc 46:357–364CrossRefGoogle Scholar
  15. 15.
    Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T (2004) Anal Chem 76:599–603CrossRefGoogle Scholar
  16. 16.
    Nelson WH, Dasari R, Feld M, Sperry JF (2004) Appl Spectrosc 58:1408–1412CrossRefGoogle Scholar
  17. 17.
    Riesenman PJ, Nicholson W (2000) Appl Environ Microb 66:620–626CrossRefGoogle Scholar
  18. 18.
    Setlow B, Setlow P (1993) Appl Environ Microb 59:3418–3423Google Scholar
  19. 19.
    Scheldeman P, Herman L, Foster S, Heyndrickx M (2006) J Appl Microbiol 101:542–555CrossRefGoogle Scholar
  20. 20.
    Stewart GSAB, Johnstone K, Hagelberg E, Ellar DJ (1981) Biochem J 198:101–106Google Scholar
  21. 21.
    Scheldeman P (2004) PhD dissertation, Ghent UniversityGoogle Scholar
  22. 22.
    Hutsebaut D, Vandenabeele P, Moens L (2005) Analyst 130:1204–1214CrossRefGoogle Scholar
  23. 23.
    Martens H, Nielsen JP, Engelsen SB (2003) Anal Chem 75:394–404CrossRefGoogle Scholar
  24. 24.
    Martens H (2003) The EMSC toolbox for MATLAB. http://www.models.kvl.dk/source/emsctoolbox
  25. 25.
    Setlow P (1995) Annu Rev Microbiol 49:29–54CrossRefGoogle Scholar
  26. 26.
    Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, ChichesterGoogle Scholar
  27. 27.
    Aronson AI, Fitz-James P (1976) Bacteriol Rev 40:360–402Google Scholar
  28. 28.
    Huang S, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li Y (2007) J Bacteriol 189:4681–4687CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Joke De Gelder
    • 1
  • Patsy Scheldeman
    • 2
  • Karen Leus
    • 1
  • Marc Heyndrickx
    • 2
  • Peter Vandenabeele
    • 1
  • Luc Moens
    • 1
  • Paul De Vos
    • 3
  1. 1.Department of Analytical ChemistryGhent UniversityGhentBelgium
  2. 2.Technology and Food UnitInstitute for Agricultural and Fisheries Research (ILVO)MelleBelgium
  3. 3.Laboratory of Microbiology (Lm-UGent)Ghent UniversityGhentBelgium

Personalised recommendations