Skip to main content
Log in

Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The Quick Easy Cheap Effective Rugged and Safe multiresidue method (QuEChERS) has been validated for the extraction of 80 pesticides belonging to various chemical classes from various types of representative commodities with low lipid contents. A mixture of 38 pesticides amenable to gas chromatography (GC) were quantitatively recovered from spiked lemon, raisins, wheat flour and cucumber, and determined using gas chromatography–tandem mass spectrometry (GC–MS/MS). An additional mixture of 42 pesticides were recovered from oranges, red wine, red grapes, raisins and wheat flour, using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for determination. The pesticides chosen for this study included many of the most frequently detected ones and/or those that are most often found to violate the maximum residue limit (MRL) in food samples, some compounds that have only recently been introduced, as well as a few other miscellaneous compounds. The method employed involved initial extraction in a water/acetonitrile system, an extraction/partitioning step after the addition of salt, and a cleanup step utilizing dispersive solid-phase extraction (D-SPE); this combination ensured that it was a rapid, simple and cost-effective procedure. The spiking levels for the recovery experiments were 0.005, 0.01, 0.02 and 0.2 mg kg−1 for GC–MS/MS analyses, and 0.01 and 0.1 mg kg−1 for LC–MS/MS analyses. Adequate pesticide quantification and identity confirmation were attained, even at the lowest concentration levels, considering the high signal-to-noise ratios, the very good accuracies and precisions, as well as the good matches between the observed ion ratios. Mean recoveries mostly ranged between 70 and 110% (98% on average), and relative standard deviations (RSD) were generally below 10% (4.3% on average). The use of analyte protectants during GC analysis was demonstrated to provide a good alternative to the use of matrix-matched standards to minimize matrix-effect-related errors. Based on these results, the methodology has been proven to be highly efficient and robust and thus suitable for monitoring the MRL compliance of a wide range of commodity/pesticide combinations.

QuEChERS for fruits and vegetables

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atkinson D, Burnett F, Foster GN, Litterick A, Mullay M, Watson CA (2003) The minimisation of pesticide residues in food: a review of the published literature. Food Standards Agency, London

  2. Groenewegen P, Reijnen EM, Goverse T (1997) Eur Environ 7:126–132

    Article  Google Scholar 

  3. Directorate-General for Press and Communication (2004) From farm to fork: Safe food for Europe’s consumers. European Commission, Brussels

    Google Scholar 

  4. Balsevich F, Berdegué JA, Flores L, Mainville D, Reardon T (2003) Am J Agr Econ 85(5):1147–1154

    Google Scholar 

  5. QS Qualität und Sicherheit GmbH (2007) QS system webpage. http://www.q-s.info. Cited 11 September 2007

  6. GLOBALGAP (2007) GLOBALGAP welcome webpage. http://www.eurepgap.org. Cited 11 September 2007

  7. European Commission (1999) Commission Directive 1999/39/EC of 6 May 1999 amending Directive 96/5/EC on processed cereal-based foods and baby foods for infants and young children. European Commission, Brussels

  8. European Commission (1999) Commission Directive 1999/50/EC of 25 May 1999 amending Directive 91/321/EEC on infant formulae and follow-on formulae. European Commission, Brussels

  9. European Commission (2003) Commission Directive 2003/13/EC of 6 May 1999 amending Directive 96/5/EC on processed cereal-based foods and baby foods for infants and young children. European Commission, Brussels

  10. European Commission (2003) Commission Directive 2003/14/EC of 25 May 1999 amending Directive 91/321/EEC on infant formulae and follow-on formulae. European Commission, Brussels

  11. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) J AOAC Int 86:412–431

    CAS  Google Scholar 

  12. CVUA Stuttgart (2007) Pesticides Online website. http://www.pesticides-online.com. Cited 11 September 2007

  13. Anastassiades M, Tasdelen B, Scherbaum E, Stajnbaher D (2007) Recent developments in QuEChERS methodology for pesticide multiresidue analysis. In: Ohkawa H, Miyagawa H, Lee PW (eds) Pesticide chemistry: Crop protection, public health, environmental safety. Wiley-VCH, Weinheim

  14. European Committee for Standardization/Technical Committee 275 (Standards under development) (2007) Foods of plant origin: Determination of pesticide residues using GC–MS and/or LC–MS(/MS) following acetonitrile extraction/partitioning and cleanup by dispersive SPE–QuEChERS method. European Committee for Standardization, Brussels

  15. Lehotay SJ, deKok A, Hiemstra M, van Bodengraven P (2005) J AOAC Int 88(2):595–614

    CAS  Google Scholar 

  16. Schenck FJ, Hobbs JE (2004) Bull Environ Contam Toxicol 73(1):24–30

    Article  CAS  Google Scholar 

  17. Diez C, Traag WA, Zommer P, Marinero P, Atienza J (2006) J Chromatogr A 1131(1–2):11–23

    Article  CAS  Google Scholar 

  18. Looser N, Kostelac D, Scherbaum E, Anastassiades M, Zipper H (2006) J Verbr Lebensm 1(2):135–141

    Google Scholar 

  19. Lehotay SJ, Mastovska K, Jun SJ (2005) J AOAC Int 88(2):630–638

    CAS  Google Scholar 

  20. Lehotay SJ, Mastovska K, Lightfield AR (2005) J AOAC Int 88(2):615–629

    CAS  Google Scholar 

  21. Stenerson K, Wolford R, Shimelis O (2006) The Reporter 24(3):3–5

    Google Scholar 

  22. Barakt A, Ashour H, Attallah E, Maatook G (2007) J Food Agric Environm 5(2):97–100

    Google Scholar 

  23. Hancock P, Dunstan J, Wauschkuhn C, Fügel D, Anastassiades M (2005) Waters Application Note 72001439EN. Waters, Milford, MA

  24. Hancock P (2006) Waters Application Note 720001607EN. Waters, Milford, MA

  25. Okihashi M, Kitagawa Y, Akutsu K, Obana H, Tanaka Y (2005) J Pest Sci 30(4):368–377

    Article  CAS  Google Scholar 

  26. Hercegova A, Domotorova M, Kruzlicova D, Matisova E (2006) J Sep Sci 29(8):1102–1109

    Article  CAS  Google Scholar 

  27. Martínez-Vidal JL, Arrebola FJ, González MJ, Garrido A, Fernandez JL (2006) Rapid Commun Mass Spectrom 20(3):365–375

    Article  Google Scholar 

  28. Jansson C, Pihlstrom T, Osterdahl BG, Markides KE (2004) J Chromatogr A 1023(1):93–104

    Article  CAS  Google Scholar 

  29. Pihlstrom T, Blomkvist G, Friman P, Pagard U, Osterdahl BG (2007) Anal Bioanal Chem ISSN 1618–2642

  30. Hetherton CL, Sykes MD, Fussell RJ, Goodall DM (2004) Rapid Commun Mass Spectrom 18(20):2443–2450

    Article  CAS  Google Scholar 

  31. Hiemstra M, de Kok A (2007) J Chromatogr A 1154(1–2):3–25

    Article  CAS  Google Scholar 

  32. Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Li XM, Li ZY, Wu YP, Guo TT (2006) J AOAC Int 89(3):740–771

    CAS  Google Scholar 

  33. Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Fu BL, Li XM, Li ZY, Wu YP (2006) Food Addit Contam 23(8):777–810

    Article  CAS  Google Scholar 

  34. Garrido Frenich A, Martinez Salvador I, Martinez Vidal JL, Lopez-Lopez T (2005) Anal Bioanal Chem 383(7–8):1106–1118

    Article  CAS  Google Scholar 

  35. Wang S, Xu Y, Pan C, Jiang S, Liu F (2007) Anal Bioanal Chem 387(2):673–685

    Article  CAS  Google Scholar 

  36. Hernandez F, Pozo OJ, Sancho JV, Bijlsma L, Barreda M, Pitarch E (2006) J Chromatogr A 1109(2):242–252

    Article  CAS  Google Scholar 

  37. Klein J, Alder L (2003) J AOAC Int 86(5):1015–1037

    CAS  Google Scholar 

  38. Alder L, Greulich K, Kempe G, Vieth B (2006) Mass Spectrom Rev 25(6):838–865

    Article  CAS  Google Scholar 

  39. Committee on Conformity Assessment (CASCO) (2005) UNE-EN ISO/IEC 17025:2005: General requirements for the competence of testing and calibration laboratories. International Organization for Standardization (ISO), Geneva

  40. Health & Consumer Protection Directorate-General (2006) Quality control procedures for pesticide residue analysis, document No SANCO/10232/2006. European Commission, Brussels

    Google Scholar 

  41. Ambrus A (1999) In: Roberts TR (ed) Pesticide chemistry and bioscience, the food-environment challenge. The Royal Society of Chemistry, Cambridge

  42. Fussell RJ, Jackson K, Reynolds SL, Wilson MF (2002) J Agric Food Chem 50:441–448

    Article  CAS  Google Scholar 

  43. El Bidaoui M, Jarju OP, Maestroni B, Phakaiew Y, Ambrus A (2000) In: Ambrus A (ed) Principles of method validation. The Royal Society of Chemistry, Cambridge

  44. Anastassiades M, Mastovska K, Lehotay SJ (2003) J Chromatogr A 1015:163–184

    Article  CAS  Google Scholar 

  45. Mastovska K, Lehotay SJ, Anastassiades M (2005) Anal Chem 77(24):8129–8137

    Google Scholar 

  46. CVUA Stuttgart (2007) Data pool of the Community Reference Laboratories for Residues of Pesticides (online). http://www.CRL-pesticides-datapool.eu. Cited 13 September 2007

Download references

Acknowledgments

We would like to express our thanks to Hubert Zipper, Ulrike Wrany and Rebekka Haisch from the Chemisches- und Veterinäruntersuchungsamt Stuttgart for their cooperation in this project.

Special thanks are also expressed to Fundación Séneca Research Grants 2006, for financing the two-month stay of Paula Payá at the Chemisches und Veterinäruntersuchungsamt Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelangelo Anastassiades.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payá, P., Anastassiades, M., Mack, D. et al. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem 389, 1697–1714 (2007). https://doi.org/10.1007/s00216-007-1610-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1610-7

Keywords

Navigation